Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 137011 by mohammad17 last updated on 28/Mar/21

Commented by mohammad17 last updated on 28/Mar/21

help me sir please

helpmesirplease

Commented by mohammad17 last updated on 28/Mar/21

?????

?????

Answered by Dwaipayan Shikari last updated on 28/Mar/21

∫_0 ^1 ((√y)/(1+(y)^(1/5) ))dy    y=t^5   5∫_0 ^1 (t^((13)/2) /(1+t))dt=5∫_0 ^1 ((t^((13)/2) −t^((15)/2) )/(1−t^2 ))dt       t^2 =u  =(5/2)∫_0 ^1 ((u^((11)/4) −u^((13)/4) )/(1−u))du=(5/2)(ψ(((17)/4))−ψ(((11)/4)))  =(5/2)(ψ(((13)/4))+(4/(13))−ψ((7/4))−(4/7))=(5/2)(ψ((9/4))+(4/(13))+(4/9)−(4/7)−(4/3)−ψ((3/4)))  =(5/2)(ψ((1/4))−ψ((3/4)))+10(1+(1/5)+(1/9)+(1/(13))−(1/7)−(1/3))  =−((5π)/2)+10(((59)/(45))−((10)/(21))+(1/(13)))=10(((263)/(315))+(1/(13)))−((5π)/2)=((526)/(63))+((10)/(13))−((5π)/2)

01y1+y5dyy=t5501t1321+tdt=501t132t1521t2dtt2=u=5201u114u1341udu=52(ψ(174)ψ(114))=52(ψ(134)+413ψ(74)47)=52(ψ(94)+413+494743ψ(34))=52(ψ(14)ψ(34))+10(1+15+19+1131713)=5π2+10(59451021+113)=10(263315+113)5π2=52663+10135π2

Commented by mohammad17 last updated on 28/Mar/21

sir whats the value of ψ

sirwhatsthevalueofψ

Commented by Dwaipayan Shikari last updated on 28/Mar/21

Generally   ψ(1−s)−ψ(s)=πcot(πs)  And ψ(1+s)=ψ(s)+(1/s)   (I have done this reduction)

Generallyψ(1s)ψ(s)=πcot(πs)Andψ(1+s)=ψ(s)+1s(Ihavedonethisreduction)

Answered by mathmax by abdo last updated on 29/Mar/21

1)I=∫_0 ^1  ((√x)/(1+x^(1/5) ))dx   (at form of serie) ⇒I=_((√x)=t)    ∫_0 ^1  (t/(1+t^(2/5) ))(2t)dt  =2∫_0 ^1  (t^2 /(1+t^(2/5) ))dt      changement  t^(2/5)  =y give t=y^(5/2)  ⇒  I=2.(5/2) ∫_0 ^1  (y^5 /(1+y)) y^((5/2)−1)  dy =5∫_0 ^1  (y^(((15)/2)−1) /(1+y))dy  =5 ∫_0 ^1  y^((13)/2) Σ_(n=0) ^∞  (−1)^n  y^n  dy  =5 Σ_(n=0) ^∞  (−1)^n  ∫_0 ^1  y^(n+((13)/2))  dy  =5Σ_(n=0) ^∞ (−1)^n  (1/(n+((13)/2)+1))[y^(n+((13)/2)+1) ]_0 ^1   =5Σ_(n=0) ^∞    (((−1)^n )/(n+((15)/2))) =10 Σ_(n=0) ^∞  (((−1)^n )/(2n+15))  rest to find the value of this serie ...be continued...

1)I=01x1+x15dx(atformofserie)I=x=t01t1+t25(2t)dt=201t21+t25dtchangementt25=ygivet=y52I=2.5201y51+yy521dy=501y15211+ydy=501y132n=0(1)nyndy=5n=0(1)n01yn+132dy=5n=0(1)n1n+132+1[yn+132+1]01=5n=0(1)nn+152=10n=0(1)n2n+15resttofindthevalueofthisserie...becontinued...

Answered by mathmax by abdo last updated on 29/Mar/21

Φ=∫_0 ^∞   e^((−(y^2 −3y))/(a^2  +b^2 ))  dy ⇒Φ=∫_0 ^∞   e^(−{y^2 −2(3/2)y +(9/4)−(9/4)}×(1/(a^2  +b^2 )))  dy  =∫_0 ^∞   e^((−(y−(3/2))^2 +(9/4))/(a^2  +b^2 ))  dy =e^(9/(4(a^2 +b^2 )))  ∫_0 ^∞   e^(−(((y−(3/2))/( (√(a^2 +b^2 )))))^2 )  dy  =_(((y−(3/2))/( (√(a^2 +b^2 ))))=z)    e^(9/(4(a^2  +b^2 )))  .∫_(−(3/(2(√(a^2 +b^2 ))))) ^∞  e^(−z^2 ) (√(a^2 +b^2 ))dz  =(√(a^2 +b^2 )).e^(9/(4(a^2 +b^2 )))  { ∫_(−(3/(2(√(a^2 +b^2 ))))) ^0  e^(−z^2 ) dz +((√π)/2)}  we have ∫_(−(3/(2(√(a^2 +b^2 ))))) ^0  e^(−z^2 ) dz =_(z=−u)    −∫_0 ^(3/(2(√(a^2 +b^2 ))))    e^(−u^2 ) (−du) ⇒  Φ =(√(a^2 +b^2 )).e^(9/(4(a^2  +b^2 )))  { ((√π)/2) +∫_0 ^(3/(2(√(a^2  +b^2 ))))     e^(−z^2 ) dz}

Φ=0e(y23y)a2+b2dyΦ=0e{y2232y+9494}×1a2+b2dy=0e(y32)2+94a2+b2dy=e94(a2+b2)0e(y32a2+b2)2dy=y32a2+b2=ze94(a2+b2).32a2+b2ez2a2+b2dz=a2+b2.e94(a2+b2){32a2+b20ez2dz+π2}wehave32a2+b20ez2dz=z=u032a2+b2eu2(du)Φ=a2+b2.e94(a2+b2){π2+032a2+b2ez2dz}

Answered by mathmax by abdo last updated on 29/Mar/21

3) I=∫_(−1) ^1  (e^(2y) /( (√7)+e^y ))dy  we do the chanhement e^y =x ⇒  I =∫_(1/e) ^e   (x^2 /( (√7)+x))(dx/x) =∫_(1/e) ^e  (x/(x+(√7)))dx =∫_(1/e) ^e  ((x+(√7)−(√7))/(x+(√7)))dx  =[x]_(1/e) ^e −(√7)[ln(x+(√7))]_(1/e) ^e  =e−e^(−1)  −(√7){ln(e+(√7))−ln(e^(−1)  +(√7))}

3)I=11e2y7+eydywedothechanhementey=xI=1eex27+xdxx=1eexx+7dx=1eex+77x+7dx=[x]1ee7[ln(x+7)]1ee=ee17{ln(e+7)ln(e1+7)}

Terms of Service

Privacy Policy

Contact: info@tinkutara.com