Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 137037 by JulioCesar last updated on 29/Mar/21

Answered by mathmax by abdo last updated on 29/Mar/21

I=∫ (dx/((x^3 −8)^2 )) (compolex method) ⇒I=∫ (dx/((x−2)^2 (x^2 +2x+4)^2 ))  x^2  +2x+4=0→Δ^′ =−3 ⇒x_1 =−1+i(√3)=2(−(1/2)+((i(√3))/2))=2e^((2iπ)/3)   x_2 =−1−i(√3)=2e^(−((2iπ)/3))  ⇒I=∫  (dx/((x−2)^2 (x−2e^((2iπ)/3) )^2 (x−e^(−((2iπ)/3)) )))  =∫  (dx/((x−2)^2 (((x−e^((2iπ)/3) )/(x−e^(−((2iπ)/3)) )))^2 (x−e^(−((2iπ)/3)) )^4 ))  changement ((x−e^((2iπ)/3) )/(x−e^(−((2iπ)/3)) ))=z ⇒x−e^((2iπ)/3) =zx−e^(−((2iπ)/3))  z ⇒  (1−z)x=e^((2iπ)/3) −e^(−((2iπ)/3)) z ⇒x =((e^(−((2iπ)/3)) z−e^((2iπ)/3) )/(z−1)) ⇒  (dx/dz)=((e^(−((2iπ)/3)) (z−1)−e^(−((2iπ)/3)) z+e^((2iπ)/3) )/((z−1)^2 ))=((2isin((π/3)))/((z−1)^2 ))=((2i((√3)/2))/((z−1)^2 ))=((i(√3))/((z−1)^2 ))  x−2=((e^(−((2iπ)/3)) z−e^((2iπ)/3) )/(z−1))−2 =((e^(−((2iπ)/3)) z−e^((2iπ)/3) −2z+2)/(z−1))  x−e^(−((2iπ)/3))  =((e^(−((2iπ)/3)) z−e^((2iπ)/3) )/(z−1))−e^((−2iπ)/3)  =((−e^((2iπ)/3) +e^(−((2iπ)/3)) )/(z−1)) =((−i(√3))/((z−1))) ⇒  I = ∫    (1/(((((e^(−((2iπ)/3)) −2)z+2−e^((2iπ)/3) )/(z−1)))^2 .z^2 (((−i(√3))/(z−1)))^4 ))((i(√3))/((z−1)^2 ))dz  =(1/((i(√3))^3 ))∫    (((z−1)^4 )/(z^2 (αz +β)^2 ))dz       (α=(e^(−((2iπ)/3)) −2) and β=2−e^((2iπ)/3) ) but  ∫  (((z−1)^4 )/(z^2 (αz+β)^2 ))dz =∫ (1/(z^2 (αz+β)^2 ))Σ_(k=0) ^4  C_4 ^k  z^k (−1)^(4−k)  dz  =Σ_(k0) ^4  C_4 ^k (−1)^k ∫ (z^(k−2) /((αz+β)^2 ))dz  =_(αz+β=t)   Σ_(k=0) ^4  C_4 ^k (−1)^k  ∫  (((((t−β)/α))^(k−2) )/t^2 )(dt/α)  =Σ_(k=0) ^4  (−1)^k  C_4 ^k (1/α^(k−1) ) ∫   (((t−β)^(k−2) )/t^2 )dt  and  I_k =∫  (((t−β)^(k−2) )/t^2 )dt are eazy to find....

I=dx(x38)2(compolexmethod)I=dx(x2)2(x2+2x+4)2x2+2x+4=0Δ=3x1=1+i3=2(12+i32)=2e2iπ3x2=1i3=2e2iπ3I=dx(x2)2(x2e2iπ3)2(xe2iπ3)=dx(x2)2(xe2iπ3xe2iπ3)2(xe2iπ3)4changementxe2iπ3xe2iπ3=zxe2iπ3=zxe2iπ3z(1z)x=e2iπ3e2iπ3zx=e2iπ3ze2iπ3z1dxdz=e2iπ3(z1)e2iπ3z+e2iπ3(z1)2=2isin(π3)(z1)2=2i32(z1)2=i3(z1)2x2=e2iπ3ze2iπ3z12=e2iπ3ze2iπ32z+2z1xe2iπ3=e2iπ3ze2iπ3z1e2iπ3=e2iπ3+e2iπ3z1=i3(z1)I=1((e2iπ32)z+2e2iπ3z1)2.z2(i3z1)4i3(z1)2dz=1(i3)3(z1)4z2(αz+β)2dz(α=(e2iπ32)andβ=2e2iπ3)but(z1)4z2(αz+β)2dz=1z2(αz+β)2k=04C4kzk(1)4kdz=k04C4k(1)kzk2(αz+β)2dz=αz+β=tk=04C4k(1)k(tβα)k2t2dtα=k=04(1)kC4k1αk1(tβ)k2t2dtandIk=(tβ)k2t2dtareeazytofind....

Answered by MJS_new last updated on 30/Mar/21

∫(dx/((x^3 −8)^2 ))=       [Ostrogradski]  =−(x/(24(x^3 −8)))−(1/(12))∫(dx/(x^3 −8))=  =−(x/(24(x^3 −8)))−(1/(144))∫(dx/(x−2))+(1/(144))∫((x+4)/(x^2 +2x+4))dx=  =−(x/(24(x^3 −8)))−((ln ∣x−2∣)/(144))+(1/(288))∫((2x+2)/(x^2 +2x+4))dx+(1/(48))∫(dx/(x^2 +2x+4))=  =−(x/(24(x^3 −8)))−((ln ∣x−2∣)/(144))+((ln (x^2 +2x+4))/(288))+(((√3)arctan ((x+1)/( (√3))))/(144))+C

dx(x38)2=[Ostrogradski]=x24(x38)112dxx38==x24(x38)1144dxx2+1144x+4x2+2x+4dx==x24(x38)lnx2144+12882x+2x2+2x+4dx+148dxx2+2x+4==x24(x38)lnx2144+ln(x2+2x+4)288+3arctanx+13144+C

Commented by JulioCesar last updated on 02/Apr/21

I don't understand sir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com