Question and Answers Forum

All Question   Topic List

Question Number 137038 by bobhans last updated on 29/Mar/21

Given triangle ABC, what is the maximum value of y=2cosA + cosB + cosC?\n

Answered by mr W last updated on 29/Mar/21

A=π−(B+C)  y=−2 cos (B+C)+cos B+cos C  due to symmetry: B=C=x  y=−2 cos 2x+2 cos x  y=−4 cos^2  x+2+2 cos x)  y=(9/4)−(4 cos^2  x−2 cos x+(1/4))  y=(9/4)−(2 cos x−(1/2))^2   y_(max) =(9/4) when B=C=x=cos^(−1) (1/4)

A=π(B+C) y=2cos(B+C)+cosB+cosC duetosymmetry:B=C=x y=2cos2x+2cosx y=4cos2x+2+2cosx) y=94(4cos2x2cosx+14) y=94(2cosx12)2 ymax=94whenB=C=x=cos114

Commented bybobhans last updated on 29/Mar/21

why B and C symetri sir

whyBandCsymetrisir

Commented bymr W last updated on 29/Mar/21

in the function  y=−2 cos (B+C)+cos B+cos C  you can exchange B and C and the  function remains the same. when   such a function has maximum or   minimum, then B=C.

inthefunction y=2cos(B+C)+cosB+cosC youcanexchangeBandCandthe functionremainsthesame.when suchafunctionhasmaximumor minimum,thenB=C.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com