Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 137055 by mathmax by abdo last updated on 29/Mar/21

find ∫_0 ^(2π)  (dx/((1+cosx +3sinx)^2 ))

find02πdx(1+cosx+3sinx)2

Commented by MJS_new last updated on 30/Mar/21

0≤(1+cos x +3sin x)^2 ≤11+2(√(10))  ⇒  ((11−2(√(10)))/(81))≤(1/((1+cos x +3sin x)^2 ))≤+∞  ⇒  integral diverges

0(1+cosx+3sinx)211+21011210811(1+cosx+3sinx)2+integraldiverges

Answered by Dwaipayan Shikari last updated on 30/Mar/21

∫_0 ^(2π) (dx/((2cos^2 (x/2)+6sin(x/2)cos(x/2))))  =(1/4)∫((sec^2 (x/2))/((cos(x/2)+3sin(x/2))^2 ))dx=(1/4)∫((sec^4 (x/2))/((1+3tan(x/2))^2 ))dx  =(1/2)∫((sec^4 u)/((1+3tanu)^2 ))du=(1/2)∫(((1+t^2 ))/((1+3t)^2 ))dt  =(1/(18))∫(dt/((t+(1/3))^2 ))+(1/(18))∫((t^2 +((2t)/3)+(1/9))/((t+(1/3))^2 ))−(1/(18))∫((((2t)/3)+(1/9))/((t+(1/3))^2 ))dt  =−(1/(18)).(1/(t+(1/3)))+(1/(18))−(1/(27))log(t+(1/3))+(1/(162(t+(1/3))))−(1/(81(t+(1/3))))  =[(1/(tan((x/2))))((1/(162))−(1/(18))−(1/(81)))+(1/(18))−(1/(27))log(tan(x/2)+(1/3))]_0 ^(2π)   Diverges

02πdx(2cos2x2+6sinx2cosx2)=14sec2x2(cosx2+3sinx2)2dx=14sec4x2(1+3tanx2)2dx=12sec4u(1+3tanu)2du=12(1+t2)(1+3t)2dt=118dt(t+13)2+118t2+2t3+19(t+13)21182t3+19(t+13)2dt=118.1t+13+118127log(t+13)+1162(t+13)181(t+13)=[1tan(x2)(1162118181)+118127log(tanx2+13)]02πDiverges

Terms of Service

Privacy Policy

Contact: info@tinkutara.com