All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 137055 by mathmax by abdo last updated on 29/Mar/21
find∫02πdx(1+cosx+3sinx)2
Commented by MJS_new last updated on 30/Mar/21
0⩽(1+cosx+3sinx)2⩽11+210⇒11−21081⩽1(1+cosx+3sinx)2⩽+∞⇒integraldiverges
Answered by Dwaipayan Shikari last updated on 30/Mar/21
∫02πdx(2cos2x2+6sinx2cosx2)=14∫sec2x2(cosx2+3sinx2)2dx=14∫sec4x2(1+3tanx2)2dx=12∫sec4u(1+3tanu)2du=12∫(1+t2)(1+3t)2dt=118∫dt(t+13)2+118∫t2+2t3+19(t+13)2−118∫2t3+19(t+13)2dt=−118.1t+13+118−127log(t+13)+1162(t+13)−181(t+13)=[1tan(x2)(1162−118−181)+118−127log(tanx2+13)]02πDiverges
Terms of Service
Privacy Policy
Contact: info@tinkutara.com