All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 137069 by 0731619177 last updated on 29/Mar/21
Answered by Ñï= last updated on 29/Mar/21
(1)yp=1D2+2D+5(6sin2x+7cos2x)=12D+1(6sin2x+7cos2x)=(1+2D)9(6sin2x+7cos2x)=19(31cos2x−22sin2x)y=e−x(C1sin2x+C2cos2x)+19(31cos2x−22sin2x)(3)yp=1D2+2D+1excosx=ex14D+3cosx=ex3−4D25cosx=ex(325cosx+425sinx)y=(C1+xC2)ex+ex(325cosx+425sinx)(9)yp=1D2+2D+2(4e−xx2sinx+3e−xcosx)=e−x1D2+1(4x2sinx+3cosx)=2ie−x1D2+1x2(eix−e−ix)+xe−x3(D2+1)′cosx=2ie−x{eix1(D+i)2+1x2−e−ix1(D−i)2+1x2}+32xe−xsinx=2ie−x{eix1D2+2iDx2−e−ix1D2−2iDx2}+32xe−xsinx=23ie−x{eix1D+2ix3−e−ix1D−2ix3}+32xe−xsinx=−13e−x{eix(1−D2i−D24+D38i)x3+e−ix(1+D2i−D24−D38i)x3}+32xe−xsinx=−13e−x{eix(x3−32ix2−32x+34i)+e−ix(x3+32ix2−32x−34i)}+32xe−xsinx=−13e−x(2x3cosx−3x2sinx−3xcosx+32sinx)+32xe−xsinxy=e−x(C1sinx+C2cosx)−13e−x(2x3cosx−3x2sinx−3xcosx)+32xe−xsinx
(2)yp=12D2+3D+1(x2+3sinx)={1−2D2−3D−(2D2+3D)2...}x2+13D−13sinx=(1−3D−11D2−...)x2−310(3D+1)sinx=x2−6x−22−310(3cosx+sinx)y=C2e−x+C2e−x/2+x2−6x−22−310(3cosx+sinx)(4)yp=12D2+1cos2x=6D2+1(cos2x+1)=−32cos2x+6y=C1sinx+C2cosx−32cos2x+6(5)yp=2D2−3D+2(x2+xex)=11+D2−3D2x2+2D2−3D+2xex={1−D2−3D2−(D2−3D)24−...}x2+2ex1D(D−1)x=(1+32D−1716D2−...)x2+ex1D−1x2=x2+3x−178+ex(1+D+D2+...)x2=x2+3x−178+ex(x2+2x+2)y=C1ex+C2e2x+ex(x2+2x+2)
(6)yp=1D3+D2+3D−5(5sin2x+10x2+3x+7)=−1D+95sin2x−15⋅11−15(D3+D2+3D)(10x2+3x+7)=117(D−9)sin2x−15{1+15(D3+D2+3D)+125(D3+D2+3D)2+...}(10x2+3x+7)=117(2cos2x−9sin2x)−15{1+35D+1425D2+...}(10x2+3x+7)=117(2cos2x−9sin2x)+2x2+3x+4y=C1ex+e−2x(C2sin2x+C3cos2x)+117(2cos2x−9sin2x)+2x2+3x+4(7)yp=1D3+D(2x2+4sinx)=231D2+1x3−1D2+14cosx=23(1−D2−D4−...)x3−x1(D2+1)′4cosx=23(x3−6x)−2x1Dcosx=23x3−4x−2xsinxy=C1+C2sinx+C3cosx−23x3−4x−2xsinx
Terms of Service
Privacy Policy
Contact: info@tinkutara.com