Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 137069 by 0731619177 last updated on 29/Mar/21

Answered by Ñï= last updated on 29/Mar/21

(1)y_p =(1/(D^2 +2D+5))(6sin 2x+7cos 2x)  =(1/(2D+1))(6sin 2x+7cos 2x)=(((1+2D))/9)(6sin 2x+7cos 2x)  =(1/9)(31cos 2x−22sin 2x)  y=e^(−x) (C_1 sin 2x+C_2 cos 2x)+(1/9)(31cos 2x−22sin 2x)  (3)y_p =(1/(D^2 +2D+1))e^x cos x=e^x (1/(4D+3))cos x=e^x ((3−4D)/(25))cos x  =e^x ((3/(25))cos x+(4/(25))sin x)  y=(C_1 +xC_2 )e^x +e^x ((3/(25))cos x+(4/(25))sin x)  (9)y_p =(1/(D^2 +2D+2))(4e^(−x) x^2 sin x+3e^(−x) cos x)  =e^(−x) (1/(D^2 +1))(4x^2 sin x+3cos x)  =(2/i)e^(−x) (1/(D^2 +1))x^2 (e^(ix) −e^(−ix) )+xe^(−x) (3/((D^2 +1)′))cos x  =(2/i)e^(−x) {e^(ix) (1/((D+i)^2 +1))x^2 −e^(−ix) (1/((D−i)^2 +1))x^2 }+(3/2)xe^(−x) sin x  =(2/i)e^(−x) {e^(ix) (1/(D^2 +2iD))x^2 −e^(−ix) (1/(D^2 −2iD))x^2 }+(3/2)xe^(−x) sin x  =(2/(3i))e^(−x) {e^(ix) (1/(D+2i))x^3 −e^(−ix) (1/(D−2i))x^3 }+(3/2)xe^(−x) sin x  =−(1/3)e^(−x) {e^(ix) (1−(D/(2i))−(D^2 /4)+(D^3 /(8i)))x^3 +e^(−ix) (1+(D/(2i))−(D^2 /4)−(D^3 /(8i)))x^3 }+(3/2)xe^(−x) sin x  =−(1/3)e^(−x) {e^(ix) (x^3 −(3/(2i))x^2 −(3/2)x+(3/(4i)))+e^(−ix) (x^3 +(3/(2i))x^2 −(3/2)x−(3/(4i)))}+(3/2)xe^(−x) sin x  =−(1/3)e^(−x) (2x^3 cos x−3x^2 sin x−3xcos x+(3/2)sin x)+(3/2)xe^(−x) sin x  y=e^(−x) (C_1 sin x+C_2 cos x)−(1/3)e^(−x) (2x^3 cos x−3x^2 sin x−3xcos x)+(3/2)xe^(−x) sin x

(1)yp=1D2+2D+5(6sin2x+7cos2x)=12D+1(6sin2x+7cos2x)=(1+2D)9(6sin2x+7cos2x)=19(31cos2x22sin2x)y=ex(C1sin2x+C2cos2x)+19(31cos2x22sin2x)(3)yp=1D2+2D+1excosx=ex14D+3cosx=ex34D25cosx=ex(325cosx+425sinx)y=(C1+xC2)ex+ex(325cosx+425sinx)(9)yp=1D2+2D+2(4exx2sinx+3excosx)=ex1D2+1(4x2sinx+3cosx)=2iex1D2+1x2(eixeix)+xex3(D2+1)cosx=2iex{eix1(D+i)2+1x2eix1(Di)2+1x2}+32xexsinx=2iex{eix1D2+2iDx2eix1D22iDx2}+32xexsinx=23iex{eix1D+2ix3eix1D2ix3}+32xexsinx=13ex{eix(1D2iD24+D38i)x3+eix(1+D2iD24D38i)x3}+32xexsinx=13ex{eix(x332ix232x+34i)+eix(x3+32ix232x34i)}+32xexsinx=13ex(2x3cosx3x2sinx3xcosx+32sinx)+32xexsinxy=ex(C1sinx+C2cosx)13ex(2x3cosx3x2sinx3xcosx)+32xexsinx

Answered by Ñï= last updated on 29/Mar/21

(2)y_p =(1/(2D^2 +3D+1))(x^2 +3sin x)  ={1−2D^2 −3D−(2D^2 +3D)^2 ...}x^2 +(1/(3D−1))3sin x  =(1−3D−11D^2 −...)x^2 −(3/(10))(3D+1)sin x  =x^2 −6x−22−(3/(10))(3cos x+sin x)  y=C_2 e^(−x) +C_2 e^(−x/2) +x^2 −6x−22−(3/(10))(3cos x+sin x)  (4)y_p =((12)/(D^2 +1))cos^2 x=(6/(D^2 +1))(cos 2x+1)  =−(3/2)cos 2x+6  y=C_1 sin x+C_2 cos x−(3/2)cos 2x+6  (5)y_p =(2/(D^2 −3D+2))(x^2 +xe^x )=(1/(1+((D^2 −3D)/2)))x^2 +(2/(D^2 −3D+2))xe^x   ={1−((D^2 −3D)/2)−(((D^2 −3D)^2 )/4)−...}x^2 +2e^x (1/(D(D−1)))x  =(1+(3/2)D−((17)/(16))D^2 −...)x^2 +e^x (1/(D−1))x^2   =x^2 +3x−((17)/8)+e^x (1+D+D^2 +...)x^2   =x^2 +3x−((17)/8)+e^x (x^2 +2x+2)  y=C_1 e^x +C_2 e^(2x) +e^x (x^2 +2x+2)

(2)yp=12D2+3D+1(x2+3sinx)={12D23D(2D2+3D)2...}x2+13D13sinx=(13D11D2...)x2310(3D+1)sinx=x26x22310(3cosx+sinx)y=C2ex+C2ex/2+x26x22310(3cosx+sinx)(4)yp=12D2+1cos2x=6D2+1(cos2x+1)=32cos2x+6y=C1sinx+C2cosx32cos2x+6(5)yp=2D23D+2(x2+xex)=11+D23D2x2+2D23D+2xex={1D23D2(D23D)24...}x2+2ex1D(D1)x=(1+32D1716D2...)x2+ex1D1x2=x2+3x178+ex(1+D+D2+...)x2=x2+3x178+ex(x2+2x+2)y=C1ex+C2e2x+ex(x2+2x+2)

Answered by Ñï= last updated on 29/Mar/21

(6)y_p =(1/(D^3 +D^2 +3D−5))(5sin 2x+10x^2 +3x+7)  =−(1/(D+9))5sin 2x−(1/5)∙(1/(1−(1/5)(D^3 +D^2 +3D)))(10x^2 +3x+7)  =(1/(17))(D−9)sin 2x−(1/5){1+(1/5)(D^3 +D^2 +3D)+(1/(25))(D^3 +D^2 +3D)^2 +...}(10x^2 +3x+7)  =(1/(17))(2cos 2x−9sin 2x)−(1/5){1+(3/5)D+((14)/(25))D^2 +...}(10x^2 +3x+7)  =(1/(17))(2cos 2x−9sin 2x)+2x^2 +3x+4  y=C_1 e^x +e^(−2x) (C_2 sin 2x+C_3 cos 2x)+(1/(17))(2cos 2x−9sin 2x)+2x^2 +3x+4  (7)y_p =(1/(D^3 +D))(2x^2 +4sin x)=(2/3)(1/(D^2 +1))x^3 −(1/(D^2 +1))4cos x  =(2/3)(1−D^2 −D^4 −...)x^3 −x(1/((D^2 +1)′))4cos x  =(2/3)(x^3 −6x)−2x(1/D)cos x  =(2/3)x^3 −4x−2xsin x  y=C_1 +C_2 sin x+C_3 cos x−(2/3)x^3 −4x−2xsin x

(6)yp=1D3+D2+3D5(5sin2x+10x2+3x+7)=1D+95sin2x151115(D3+D2+3D)(10x2+3x+7)=117(D9)sin2x15{1+15(D3+D2+3D)+125(D3+D2+3D)2+...}(10x2+3x+7)=117(2cos2x9sin2x)15{1+35D+1425D2+...}(10x2+3x+7)=117(2cos2x9sin2x)+2x2+3x+4y=C1ex+e2x(C2sin2x+C3cos2x)+117(2cos2x9sin2x)+2x2+3x+4(7)yp=1D3+D(2x2+4sinx)=231D2+1x31D2+14cosx=23(1D2D4...)x3x1(D2+1)4cosx=23(x36x)2x1Dcosx=23x34x2xsinxy=C1+C2sinx+C3cosx23x34x2xsinx

Terms of Service

Privacy Policy

Contact: info@tinkutara.com