Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 137093 by mnjuly1970 last updated on 29/Mar/21

         .....advanced    calculus....       please  evaluate::         1: Σ_(n=1 ) ^∞ (H_n /((2n+1)^2 )) =?      2: ∫_0 ^( 1) ((xln(x)ln(1−x))/(1−x))dx=?    note:H_n =1+(1/2)+(1/3)+...+(1/n)=∫_0 ^( 1) ((1−x^n )/(1−x))dx

.....advancedcalculus....pleaseevaluate::1:n=1Hn(2n+1)2=?2:01xln(x)ln(1x)1xdx=?note:Hn=1+12+13+...+1n=011xn1xdx

Answered by Ar Brandon last updated on 31/Mar/21

Λ=∫_0 ^1 ((xln(x)ln(1−x))/(1−x))dx     ={xln(x)∙((ln^2 (1−x))/(−2))+(1/2)∫(1+lnx)ln^2 (1−x)dx}_0 ^1      =(1/2)∫_0 ^1 (1+lnx)ln^2 (1−x)dx=(1/2)∫_0 ^1 (1+ln(1−x))ln^2 xdx     =(1/2){∫_0 ^1 ln^2 xdx+∫_0 ^1 ln(1−x)ln^2 xdx}     =(1/2){(∂^2 /∂α^2 )∣_(α=0) ∫_0 ^1 x^α dx−(∂^2 /∂ρ^2 )∣_(ρ=0) ∫_0 ^1 Σ_(n=1) ^∞ (x^(n+ρ) /n)}     =(1/2){(∂^2 /∂α^2 )∣_(α=0) (1/(α+1))−(∂^2 /∂ρ^2 )∣_(ρ=0) Σ_(n=1) ^∞ (1/(n(n+ρ+1)))}     =(1/2){2−Σ_(n=1) ^∞ (2/(n(n+1)^3 ))}=1−Σ_(n=1) ^∞ (1/(n(n+1)^3 ))     =1−Σ_(n=1) ^∞ {(1/n)−(1/(n+1))−(1/((n+1)^2 ))−(1/((n+1)^3 ))}     =1−1+Σ_(n=1) ^∞ (1/((n+1)^2 ))+Σ_(n=1) ^∞ (1/((n+1)^3 ))     =Σ_(n=1) ^∞ (1/n^2 )−1+Σ_(n=1) ^∞ (1/n^3 )−1=ζ(2)+ζ(3)−2=(π^2 /6)+ζ(3)−2

Λ=01xln(x)ln(1x)1xdx={xln(x)ln2(1x)2+12(1+lnx)ln2(1x)dx}01=1201(1+lnx)ln2(1x)dx=1201(1+ln(1x))ln2xdx=12{01ln2xdx+01ln(1x)ln2xdx}=12{2α2α=001xαdx2ρ2ρ=001n=1xn+ρn}=12{2α2α=01α+12ρ2ρ=0n=11n(n+ρ+1)}=12{2n=12n(n+1)3}=1n=11n(n+1)3=1n=1{1n1n+11(n+1)21(n+1)3}=11+n=11(n+1)2+n=11(n+1)3=n=11n21+n=11n31=ζ(2)+ζ(3)2=π26+ζ(3)2

Answered by Dwaipayan Shikari last updated on 29/Mar/21

ð(a,b)=∫_0 ^1 x^(α−1) (1−x)^(β−1) dx  (∂/(∂a∂b))ð(a,b)=∫_0 ^1 log(x)log(1−x)x^(α−1) (1−x)^(β−1) dx  ((∂ð(a,b))/(∂a∂b))=((∂(((Γ(a)Γ(b))/(Γ(a+b)))))/(∂a∂b))=(∂/∂a)(((Γ(a)Γ(a+b)Γ′(b)−Γ(b)Γ(a)Γ′(a+b))/(Γ^2 (a+b))))  (∂/∂a)(((Γ(a)Γ′(b))/(Γ(a+b)))−((Γ(b)Γ(a)ψ(a+b))/(Γ(a+b))))  =((Γ(a+b)Γ′(a)Γ′(b)−Γ′(a+b)Γ(a)Γ′(b))/(Γ^2 (a+b)))−((Γ′(b)ψ(a+b)Γ(a)+ψ′(a+b)Γ(a)Γ(b)−ψ^2 (a+b)Γ(a)Γ(b)Γ(b+a))/(Γ^2 (a+b)))  a=1  b=0

ð(a,b)=01xα1(1x)β1dxabð(a,b)=01log(x)log(1x)xα1(1x)β1dxð(a,b)ab=(Γ(a)Γ(b)Γ(a+b))ab=a(Γ(a)Γ(a+b)Γ(b)Γ(b)Γ(a)Γ(a+b)Γ2(a+b))a(Γ(a)Γ(b)Γ(a+b)Γ(b)Γ(a)ψ(a+b)Γ(a+b))=Γ(a+b)Γ(a)Γ(b)Γ(a+b)Γ(a)Γ(b)Γ2(a+b)Γ(b)ψ(a+b)Γ(a)+ψ(a+b)Γ(a)Γ(b)ψ2(a+b)Γ(a)Γ(b)Γ(b+a)Γ2(a+b)a=1b=0

Answered by Dwaipayan Shikari last updated on 29/Mar/21

Σ_(n=1) ^∞ (H_n /((2n+1)^2 ))=∫_0 ^1 Σ_(n=1) ^∞ (H_n /(2n+1))x^(2n+1)   Σ_(n=1) ^∞ H_n x^(2n+α) =−x^α ((log(1−x^2 ))/(1−x^2 ))  Σ_(n=1) ^∞ (H_n /(2n+α+1))=−∫_0 ^1 ((x^α log(1−x^2 ))/(1−x^2 ))dx  Σ_(n=1) ^∞ (H_n /((2n+α+1)^2 ))=(∂/∂α)∫_0 ^1 ((x^α log(1−x^2 ))/(1−x^2 ))dx  =(∂/∂α)∫_0 ^1 ((u^((α−1)/2) log(1−u))/(1−u))du=(∂/∂α).(∂/∂ϑ)∣_(ϑ=0) (((Γ(((α+1)/2))Γ(ϑ))/(Γ((α/2)+(1/2)+ϑ))))∣

n=1Hn(2n+1)2=01n=1Hn2n+1x2n+1n=1Hnx2n+α=xαlog(1x2)1x2n=1Hn2n+α+1=01xαlog(1x2)1x2dxn=1Hn(2n+α+1)2=α01xαlog(1x2)1x2dx=α01uα12log(1u)1udu=α.ϑϑ=0(Γ(α+12)Γ(ϑ)Γ(α2+12+ϑ))

Commented by mnjuly1970 last updated on 29/Mar/21

thanks alot...

thanksalot...

Answered by Ñï= last updated on 29/Mar/21

∫_0 ^1 ((xln(x)ln(1−x))/(1−x))dx=∫_0 ^1 (((1−x)ln(x)ln(1−x))/x)dx  =∫_0 ^1 ((ln(x)ln(1−x))/x)dx−∫_0 ^1 ln(x)ln(1−x)dx  =∫_0 ^1 ((Li_2 (x))/x)dx+∫_0 ^1 x(((ln(1−x))/x)−((lnx)/(1−x)))dx  =Li_3 (1)+∫_0 ^1 ln(1−x)dx−∫_0 ^1 (1−x)((ln(1−x))/x)dx  =Li_3 (1)+∫_0 ^1 ln(1−x)dx−∫_0 ^1 ((ln(1−x))/x)−ln(1−x)dx  =Li_3 (1)+2∫_0 ^1 lnxdx+Li_2 (1)  =Li_3 (1)+Li_2 (1)−2

01xln(x)ln(1x)1xdx=01(1x)ln(x)ln(1x)xdx=01ln(x)ln(1x)xdx01ln(x)ln(1x)dx=01Li2(x)xdx+01x(ln(1x)xlnx1x)dx=Li3(1)+01ln(1x)dx01(1x)ln(1x)xdx=Li3(1)+01ln(1x)dx01ln(1x)xln(1x)dx=Li3(1)+201lnxdx+Li2(1)=Li3(1)+Li2(1)2

Commented by mnjuly1970 last updated on 29/Mar/21

thanks alot ...

thanksalot...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com