Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 137187 by mathocean1 last updated on 30/Mar/21

I_n =∫_0 ^(π/2) sin^n x dx  Write a relation between I_(n+2)  and I_n .

$${I}_{{n}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{{n}} {x}\:{dx} \\ $$$${Write}\:{a}\:{relation}\:{between}\:{I}_{{n}+\mathrm{2}} \:{and}\:{I}_{{n}} . \\ $$

Answered by Dwaipayan Shikari last updated on 30/Mar/21

∫_0 ^(π/2) sin^n x dx=∫_0 ^(π/2) sin^(2(((n+1)/2))−1) (x)cos^(2((1/2))−1) (x)dx  =((Γ(((n+1)/2))Γ((1/2)))/(2Γ((n/2)+1)))=J_n   J_(n+2) =((Γ(((n+3)/2))Γ((1/2)))/(2Γ((n/2)+2)))=(((((n+1)/2)))/(((n/2)+1)))J_n

$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{{n}} {x}\:{dx}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{\mathrm{2}\left(\frac{{n}+\mathrm{1}}{\mathrm{2}}\right)−\mathrm{1}} \left({x}\right){cos}^{\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)−\mathrm{1}} \left({x}\right){dx} \\ $$$$=\frac{\Gamma\left(\frac{{n}+\mathrm{1}}{\mathrm{2}}\right)\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)}{\mathrm{2}\Gamma\left(\frac{{n}}{\mathrm{2}}+\mathrm{1}\right)}={J}_{{n}} \\ $$$${J}_{{n}+\mathrm{2}} =\frac{\Gamma\left(\frac{{n}+\mathrm{3}}{\mathrm{2}}\right)\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)}{\mathrm{2}\Gamma\left(\frac{{n}}{\mathrm{2}}+\mathrm{2}\right)}=\frac{\left(\frac{{n}+\mathrm{1}}{\mathrm{2}}\right)}{\left(\frac{{n}}{\mathrm{2}}+\mathrm{1}\right)}{J}_{{n}} \\ $$

Answered by mathmax by abdo last updated on 30/Mar/21

I_(n+2) =∫_0 ^(π/2)  sin^n x sin^2  xdx =∫_0 ^(π/2)  sin^n x(1−cos^2 x)dx  =∫_0 ^(π/2)  sin^n xdx −∫_0 ^(π/2)  cos^2 x sin^n x dx=I_n −J  J =∫_0 ^(π/2)  cosx(cosx sin^n x)dx =_(by parts)   [((sin^(n+1) x)/(n+1))cosx]_0 ^(π/2) −∫_0 ^(π/2) (−sinx)((sin^(n+1) x)/(n+1))dx  =(1/(n+1))∫_0 ^(π/2)  sin^(n+2) xdx ⇒I_(n+2 ) =I_n −(1/(n+1))I_(n+2)  ⇒  (1+(1/(n+1)))I_(n+2) =I_n  ⇒((n+2)/(n+1))I_(n+2) =I_n  ⇒I_(n+2) =((n+1)/(n+2))I_n

$$\mathrm{I}_{\mathrm{n}+\mathrm{2}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\mathrm{sin}^{\mathrm{n}} \mathrm{x}\:\mathrm{sin}^{\mathrm{2}} \:\mathrm{xdx}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\mathrm{sin}^{\mathrm{n}} \mathrm{x}\left(\mathrm{1}−\mathrm{cos}^{\mathrm{2}} \mathrm{x}\right)\mathrm{dx} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\mathrm{sin}^{\mathrm{n}} \mathrm{xdx}\:−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\mathrm{cos}^{\mathrm{2}} \mathrm{x}\:\mathrm{sin}^{\mathrm{n}} \mathrm{x}\:\mathrm{dx}=\mathrm{I}_{\mathrm{n}} −\mathrm{J} \\ $$$$\mathrm{J}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\mathrm{cosx}\left(\mathrm{cosx}\:\mathrm{sin}^{\mathrm{n}} \mathrm{x}\right)\mathrm{dx}\:=_{\mathrm{by}\:\mathrm{parts}} \:\:\left[\frac{\mathrm{sin}^{\mathrm{n}+\mathrm{1}} \mathrm{x}}{\mathrm{n}+\mathrm{1}}\mathrm{cosx}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} −\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(−\mathrm{sinx}\right)\frac{\mathrm{sin}^{\mathrm{n}+\mathrm{1}} \mathrm{x}}{\mathrm{n}+\mathrm{1}}\mathrm{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{n}+\mathrm{1}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\mathrm{sin}^{\mathrm{n}+\mathrm{2}} \mathrm{xdx}\:\Rightarrow\mathrm{I}_{\mathrm{n}+\mathrm{2}\:} =\mathrm{I}_{\mathrm{n}} −\frac{\mathrm{1}}{\mathrm{n}+\mathrm{1}}\mathrm{I}_{\mathrm{n}+\mathrm{2}} \:\Rightarrow \\ $$$$\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{n}+\mathrm{1}}\right)\mathrm{I}_{\mathrm{n}+\mathrm{2}} =\mathrm{I}_{\mathrm{n}} \:\Rightarrow\frac{\mathrm{n}+\mathrm{2}}{\mathrm{n}+\mathrm{1}}\mathrm{I}_{\mathrm{n}+\mathrm{2}} =\mathrm{I}_{\mathrm{n}} \:\Rightarrow\mathrm{I}_{\mathrm{n}+\mathrm{2}} =\frac{\mathrm{n}+\mathrm{1}}{\mathrm{n}+\mathrm{2}}\mathrm{I}_{\mathrm{n}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com