Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 137277 by mnjuly1970 last updated on 31/Mar/21

        𝛗=∫_0 ^( (π/2)) sin^2 (x).ln(sin(x))dx=?

$$ \\ $$$$\:\:\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} {sin}^{\mathrm{2}} \left({x}\right).{ln}\left({sin}\left({x}\right)\right){dx}=? \\ $$$$ \\ $$

Answered by Dwaipayan Shikari last updated on 31/Mar/21

∫_0 ^(π/2) sin^a (x)dx=((Γ(((a+1)/2))Γ((1/2)))/(2Γ((a/2)+1)))  ∫_0 ^(π/2) log(sinx)sin^a x dx=((((Γ((a/2)+1)Γ′(((a+1)/2))(√π))/2)−((Γ(((a+1)/2))Γ′((a/2)+1)(√π))/2))/(2Γ^2 ((a/2)+1)))  ∫_0 ^(π/2) sin^2 x log(sinx)dx=(((π/4)ψ((3/2))−(π/4)(1−γ))/2)  =(π/8)(−γ+2−2log(2)−1+γ)=(π/8)(1−log(4))

$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{{a}} \left({x}\right){dx}=\frac{\Gamma\left(\frac{{a}+\mathrm{1}}{\mathrm{2}}\right)\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)}{\mathrm{2}\Gamma\left(\frac{{a}}{\mathrm{2}}+\mathrm{1}\right)} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {log}\left({sinx}\right){sin}^{{a}} {x}\:{dx}=\frac{\frac{\Gamma\left(\frac{{a}}{\mathrm{2}}+\mathrm{1}\right)\Gamma'\left(\frac{{a}+\mathrm{1}}{\mathrm{2}}\right)\sqrt{\pi}}{\mathrm{2}}−\frac{\Gamma\left(\frac{{a}+\mathrm{1}}{\mathrm{2}}\right)\Gamma'\left(\frac{{a}}{\mathrm{2}}+\mathrm{1}\right)\sqrt{\pi}}{\mathrm{2}}}{\mathrm{2}\Gamma^{\mathrm{2}} \left(\frac{{a}}{\mathrm{2}}+\mathrm{1}\right)} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{\mathrm{2}} {x}\:{log}\left({sinx}\right){dx}=\frac{\frac{\pi}{\mathrm{4}}\psi\left(\frac{\mathrm{3}}{\mathrm{2}}\right)−\frac{\pi}{\mathrm{4}}\left(\mathrm{1}−\gamma\right)}{\mathrm{2}} \\ $$$$=\frac{\pi}{\mathrm{8}}\left(−\gamma+\mathrm{2}−\mathrm{2}{log}\left(\mathrm{2}\right)−\mathrm{1}+\gamma\right)=\frac{\pi}{\mathrm{8}}\left(\mathrm{1}−{log}\left(\mathrm{4}\right)\right) \\ $$

Commented by mnjuly1970 last updated on 31/Mar/21

 very nice..  thank you mr Dwaipayan..

$$\:{very}\:{nice}.. \\ $$$${thank}\:{you}\:{mr}\:{Dwaipayan}.. \\ $$

Answered by Ar Brandon last updated on 31/Mar/21

φ=∫_0 ^(π/2) sin^2 (x)ln(sinx)dx     =(∂/∂α)∣_(α=2) ∫_0 ^(π/2) sin^α (x)dx=(∂/∂α)∣_(α=2) ((Γ(((α+1)/2))Γ((1/2)))/(2Γ(((α+2)/2))))     =((√π)/2)∣_(α=2) ((Γ((α/2)+1)Γ′((α/2)+(1/2))−Γ((α/2)+(1/2))Γ′((α/2)+1))/(Γ^2 ((α/2)+1)))     =((√π)/2)∙(1/2)∙((Γ(2)Γ((3/2))[ψ((3/2))−ψ(2)])/(Γ^2 (2)))     =(π/8)(2−γ−2ln2−1+γ)=(π/( 8))(1−2ln2)

$$\phi=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{sin}^{\mathrm{2}} \left(\mathrm{x}\right)\mathrm{ln}\left(\mathrm{sinx}\right)\mathrm{dx} \\ $$$$\:\:\:=\frac{\partial}{\partial\alpha}\mid_{\alpha=\mathrm{2}} \int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{sin}^{\alpha} \left(\mathrm{x}\right)\mathrm{dx}=\frac{\partial}{\partial\alpha}\mid_{\alpha=\mathrm{2}} \frac{\Gamma\left(\frac{\alpha+\mathrm{1}}{\mathrm{2}}\right)\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)}{\mathrm{2}\Gamma\left(\frac{\alpha+\mathrm{2}}{\mathrm{2}}\right)} \\ $$$$\:\:\:=\frac{\sqrt{\pi}}{\mathrm{2}}\mid_{\alpha=\mathrm{2}} \frac{\Gamma\left(\frac{\alpha}{\mathrm{2}}+\mathrm{1}\right)\Gamma'\left(\frac{\alpha}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\right)−\Gamma\left(\frac{\alpha}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\right)\Gamma'\left(\frac{\alpha}{\mathrm{2}}+\mathrm{1}\right)}{\Gamma^{\mathrm{2}} \left(\frac{\alpha}{\mathrm{2}}+\mathrm{1}\right)} \\ $$$$\:\:\:=\frac{\sqrt{\pi}}{\mathrm{2}}\centerdot\frac{\mathrm{1}}{\mathrm{2}}\centerdot\frac{\Gamma\left(\mathrm{2}\right)\Gamma\left(\frac{\mathrm{3}}{\mathrm{2}}\right)\left[\psi\left(\frac{\mathrm{3}}{\mathrm{2}}\right)−\psi\left(\mathrm{2}\right)\right]}{\Gamma^{\mathrm{2}} \left(\mathrm{2}\right)} \\ $$$$\:\:\:=\frac{\pi}{\mathrm{8}}\left(\mathrm{2}−\gamma−\mathrm{2ln2}−\mathrm{1}+\gamma\right)=\frac{\pi}{\:\mathrm{8}}\left(\mathrm{1}−\mathrm{2ln2}\right) \\ $$

Answered by Ñï= last updated on 31/Mar/21

∫_0 ^(π/2) sin^2 xln sin xdx=∫_0 ^(π/2) cos^2 xln sin xdx+(π/4)......     ...(1)...by parts  ∫_0 ^(π/2) sin^2 xln sin xdx+∫_0 ^(π/2) cos^2 xln sin xdx=−(π/2)ln2.... (2)  ⇒∫_0 ^(π/2) sin^2 xln sin xdx=(1/2)((π/4)−(π/2)ln2)=(π/8)(1−2ln2)

$$\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} {xln}\:\mathrm{sin}\:{xdx}=\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} {xln}\:\mathrm{sin}\:{xdx}+\frac{\pi}{\mathrm{4}}......\:\:\:\:\:...\left(\mathrm{1}\right)...{by}\:{parts} \\ $$$$\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} {xln}\:\mathrm{sin}\:{xdx}+\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} {xln}\:\mathrm{sin}\:{xdx}=−\frac{\pi}{\mathrm{2}}{ln}\mathrm{2}....\:\left(\mathrm{2}\right) \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} {xln}\:\mathrm{sin}\:{xdx}=\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\pi}{\mathrm{4}}−\frac{\pi}{\mathrm{2}}{ln}\mathrm{2}\right)=\frac{\pi}{\mathrm{8}}\left(\mathrm{1}−\mathrm{2}{ln}\mathrm{2}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com