Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 137307 by mnjuly1970 last updated on 31/Mar/21

        .....advanced    calculus.....      prove  that::      Σ_(n=0) ^∞ ((((−1)^n )/(4n^2 +1)))=(1/4)(2+πcsch((π/2)))        ............................

$$\:\:\:\:\:\:\:\:.....{advanced}\:\:\:\:{calculus}..... \\ $$$$\:\:\:\:{prove}\:\:{that}:: \\ $$$$\:\:\:\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{4}{n}^{\mathrm{2}} +\mathrm{1}}\right)=\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{2}+\pi{csch}\left(\frac{\pi}{\mathrm{2}}\right)\right) \\ $$$$\:\:\:\:\:\:............................ \\ $$

Answered by Dwaipayan Shikari last updated on 31/Mar/21

1−(1/5)+(1/(17))−(1/(37))+(1/(65))−(1/(101))+...  1,17,65  g_n =an^2 +bn+c⇒g_0 =c=1  g_1 =a+b+c=17⇒a+b=16  g_2 =4a+2b+1=65⇒2a+b=32⇒a=16   b=0 c=1 ⇒g_n =16n^2 +1  5,37,101    g_n =(4n+2)^2 +1  Σ_(n=0) ^∞ (1/(16n^2 +1))−(1/(16n^2 +16n+5))  =(1/(16))((π/(2.(1/4)))coth((π/4))−(1/(2.(1/(16)))))−(1/(4i(√5)))Σ_(n=0) ^∞ (1/((n−(((−4+i(√5))/8)))))−(1/((n−(((−4−i(√5))/8)))))  =(π/8)coth((π/4))−(1/2)−(1/(4i(√5)))(ψ((1/2)+((i(√5))/4))−ψ((1/2)−((i(√5))/8)))  =(π/8)coth((π/4))−(1/2)+(π/(4i(√5)))cot((1/2)+((i(√5))/8))π  =(π/8)coth((π/4))−(1/2)−(π/( 4(√5)))tanh(((√5)/8)π)  :(

$$\mathrm{1}−\frac{\mathrm{1}}{\mathrm{5}}+\frac{\mathrm{1}}{\mathrm{17}}−\frac{\mathrm{1}}{\mathrm{37}}+\frac{\mathrm{1}}{\mathrm{65}}−\frac{\mathrm{1}}{\mathrm{101}}+... \\ $$$$\mathrm{1},\mathrm{17},\mathrm{65} \\ $$$${g}_{{n}} ={an}^{\mathrm{2}} +{bn}+{c}\Rightarrow{g}_{\mathrm{0}} ={c}=\mathrm{1} \\ $$$${g}_{\mathrm{1}} ={a}+{b}+{c}=\mathrm{17}\Rightarrow{a}+{b}=\mathrm{16} \\ $$$${g}_{\mathrm{2}} =\mathrm{4}{a}+\mathrm{2}{b}+\mathrm{1}=\mathrm{65}\Rightarrow\mathrm{2}{a}+{b}=\mathrm{32}\Rightarrow{a}=\mathrm{16}\:\:\:{b}=\mathrm{0}\:{c}=\mathrm{1}\:\Rightarrow{g}_{{n}} =\mathrm{16}{n}^{\mathrm{2}} +\mathrm{1} \\ $$$$\mathrm{5},\mathrm{37},\mathrm{101}\:\:\:\:{g}_{{n}} =\left(\mathrm{4}{n}+\mathrm{2}\right)^{\mathrm{2}} +\mathrm{1} \\ $$$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{16}{n}^{\mathrm{2}} +\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{16}{n}^{\mathrm{2}} +\mathrm{16}{n}+\mathrm{5}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{16}}\left(\frac{\pi}{\mathrm{2}.\frac{\mathrm{1}}{\mathrm{4}}}{coth}\left(\frac{\pi}{\mathrm{4}}\right)−\frac{\mathrm{1}}{\mathrm{2}.\frac{\mathrm{1}}{\mathrm{16}}}\right)−\frac{\mathrm{1}}{\mathrm{4}{i}\sqrt{\mathrm{5}}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left({n}−\left(\frac{−\mathrm{4}+{i}\sqrt{\mathrm{5}}}{\mathrm{8}}\right)\right)}−\frac{\mathrm{1}}{\left({n}−\left(\frac{−\mathrm{4}−{i}\sqrt{\mathrm{5}}}{\mathrm{8}}\right)\right)} \\ $$$$=\frac{\pi}{\mathrm{8}}{coth}\left(\frac{\pi}{\mathrm{4}}\right)−\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{4}{i}\sqrt{\mathrm{5}}}\left(\psi\left(\frac{\mathrm{1}}{\mathrm{2}}+\frac{{i}\sqrt{\mathrm{5}}}{\mathrm{4}}\right)−\psi\left(\frac{\mathrm{1}}{\mathrm{2}}−\frac{{i}\sqrt{\mathrm{5}}}{\mathrm{8}}\right)\right) \\ $$$$=\frac{\pi}{\mathrm{8}}{coth}\left(\frac{\pi}{\mathrm{4}}\right)−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\pi}{\mathrm{4}{i}\sqrt{\mathrm{5}}}{cot}\left(\frac{\mathrm{1}}{\mathrm{2}}+\frac{{i}\sqrt{\mathrm{5}}}{\mathrm{8}}\right)\pi \\ $$$$=\frac{\pi}{\mathrm{8}}{coth}\left(\frac{\pi}{\mathrm{4}}\right)−\frac{\mathrm{1}}{\mathrm{2}}−\frac{\pi}{\:\mathrm{4}\sqrt{\mathrm{5}}}{tanh}\left(\frac{\sqrt{\mathrm{5}}}{\mathrm{8}}\pi\right) \\ $$$$:\left(\right. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com