Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 137482 by Algoritm last updated on 03/Apr/21

Answered by MJS_new last updated on 03/Apr/21

0

$$\mathrm{0} \\ $$

Commented by Algoritm last updated on 03/Apr/21

proof

$$\mathrm{proof} \\ $$

Answered by TheSupreme last updated on 03/Apr/21

∫_n ^(2n) (1/(2x^4 ))≤∫_n ^(2n) ((xdx)/(1+x^5 ))≤∫_n ^(2n) (1/x^4 )dx  for n>1 we have x^5 >1>0  −(1/6)x^(−3) ∣_n ^(2n) ≤I≤−(1/3)x^(−3) ∣_n ^(2n)   [−(1/(48n^3 ))+(1/(6n^3 ))]≤I≤[−(1/(24n^3 ))+(1/(3n^2 ))]  (7/(48n^3 ))≤I_n ≤(7/(24n^3 ))  for n→∞  0≤I≤0→ I=0

$$\int_{{n}} ^{\mathrm{2}{n}} \frac{\mathrm{1}}{\mathrm{2}{x}^{\mathrm{4}} }\leqslant\int_{{n}} ^{\mathrm{2}{n}} \frac{{xdx}}{\mathrm{1}+{x}^{\mathrm{5}} }\leqslant\int_{{n}} ^{\mathrm{2}{n}} \frac{\mathrm{1}}{{x}^{\mathrm{4}} }{dx} \\ $$$${for}\:{n}>\mathrm{1}\:{we}\:{have}\:{x}^{\mathrm{5}} >\mathrm{1}>\mathrm{0} \\ $$$$−\frac{\mathrm{1}}{\mathrm{6}}{x}^{−\mathrm{3}} \mid_{{n}} ^{\mathrm{2}{n}} \leqslant{I}\leqslant−\frac{\mathrm{1}}{\mathrm{3}}{x}^{−\mathrm{3}} \mid_{{n}} ^{\mathrm{2}{n}} \\ $$$$\left[−\frac{\mathrm{1}}{\mathrm{48}{n}^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{6}{n}^{\mathrm{3}} }\right]\leqslant{I}\leqslant\left[−\frac{\mathrm{1}}{\mathrm{24}{n}^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{3}{n}^{\mathrm{2}} }\right] \\ $$$$\frac{\mathrm{7}}{\mathrm{48}{n}^{\mathrm{3}} }\leqslant{I}_{{n}} \leqslant\frac{\mathrm{7}}{\mathrm{24}{n}^{\mathrm{3}} } \\ $$$${for}\:{n}\rightarrow\infty \\ $$$$\mathrm{0}\leqslant{I}\leqslant\mathrm{0}\rightarrow\:{I}=\mathrm{0} \\ $$$$ \\ $$

Commented by mathmax by abdo last updated on 03/Apr/21

let U_n =∫_n ^(2n)   ((xdx)/(1+x^5 )) ⇒U_n =_(x=(1/t))    ∫_(1/n) ^(2/n)  (1/(t(1+(1/t^5 ))))(−(dt/t^2 ))  =−∫_(1/n) ^(2/n)      (dt/(t^3  +(1/t^2 )))  =−∫_(1/n) ^(2/n)  (t^2 /(1+t^5 ))dt  we have 1+t^5  >1 ⇒  ∫_(1/n) ^(2/n)  (t^2 /(1+t^5 ))dt <∫_(1/n) ^(2/n)  t^2  dt =[(1/3)t^3 ]_(1/n) ^(2/n) =(1/3){(8/n^3 )−(1/n^3 )}→0(n→+∞) ⇒  lim_(n→+∞) U_n =0

$$\mathrm{let}\:\mathrm{U}_{\mathrm{n}} =\int_{\mathrm{n}} ^{\mathrm{2n}} \:\:\frac{\mathrm{xdx}}{\mathrm{1}+\mathrm{x}^{\mathrm{5}} }\:\Rightarrow\mathrm{U}_{\mathrm{n}} =_{\mathrm{x}=\frac{\mathrm{1}}{\mathrm{t}}} \:\:\:\int_{\frac{\mathrm{1}}{\mathrm{n}}} ^{\frac{\mathrm{2}}{\mathrm{n}}} \:\frac{\mathrm{1}}{\mathrm{t}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{t}^{\mathrm{5}} }\right)}\left(−\frac{\mathrm{dt}}{\mathrm{t}^{\mathrm{2}} }\right) \\ $$$$=−\int_{\frac{\mathrm{1}}{\mathrm{n}}} ^{\frac{\mathrm{2}}{\mathrm{n}}} \:\:\:\:\:\frac{\mathrm{dt}}{\mathrm{t}^{\mathrm{3}} \:+\frac{\mathrm{1}}{\mathrm{t}^{\mathrm{2}} }}\:\:=−\int_{\frac{\mathrm{1}}{\mathrm{n}}} ^{\frac{\mathrm{2}}{\mathrm{n}}} \:\frac{\mathrm{t}^{\mathrm{2}} }{\mathrm{1}+\mathrm{t}^{\mathrm{5}} }\mathrm{dt}\:\:\mathrm{we}\:\mathrm{have}\:\mathrm{1}+\mathrm{t}^{\mathrm{5}} \:>\mathrm{1}\:\Rightarrow \\ $$$$\int_{\frac{\mathrm{1}}{\mathrm{n}}} ^{\frac{\mathrm{2}}{\mathrm{n}}} \:\frac{\mathrm{t}^{\mathrm{2}} }{\mathrm{1}+\mathrm{t}^{\mathrm{5}} }\mathrm{dt}\:<\int_{\frac{\mathrm{1}}{\mathrm{n}}} ^{\frac{\mathrm{2}}{\mathrm{n}}} \:\mathrm{t}^{\mathrm{2}} \:\mathrm{dt}\:=\left[\frac{\mathrm{1}}{\mathrm{3}}\mathrm{t}^{\mathrm{3}} \right]_{\frac{\mathrm{1}}{\mathrm{n}}} ^{\frac{\mathrm{2}}{\mathrm{n}}} =\frac{\mathrm{1}}{\mathrm{3}}\left\{\frac{\mathrm{8}}{\mathrm{n}^{\mathrm{3}} }−\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{3}} }\right\}\rightarrow\mathrm{0}\left(\mathrm{n}\rightarrow+\infty\right)\:\Rightarrow \\ $$$$\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \mathrm{U}_{\mathrm{n}} =\mathrm{0} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com