Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 137501 by mnjuly1970 last updated on 03/Apr/21

       ....advanced .... calculus....    prove that::  𝛗=∫_0 ^( 1) ((ln(x).ln(1βˆ’x))/(1+x))dx=((13)/8)ΞΆ(3)βˆ’(Ο€^2 /4)ln(2)....

....advanced....calculus....provethat::Ο•=∫01ln(x).ln(1βˆ’x)1+xdx=138ΞΆ(3)βˆ’Ο€24ln(2)....

Answered by Ñï= last updated on 04/Apr/21

Ο†=∫_0 ^1 ((lnx ln(1βˆ’x))/(1+x))dx  =∫_0 ^1 ((lnxln(1βˆ’x^2 ))/(1+x))βˆ’βˆ«_0 ^1 ((lnxln(1+x))/(1+x))dx  =∫_0 ^1 ((lnxln(1βˆ’x^2 ))/(1βˆ’x^2 ))dxβˆ’βˆ«_0 ^1 ((xln xln (1βˆ’x^2 ))/(1βˆ’x^2 ))dxβˆ’βˆ«_0 ^1 ((ln xln (1+x))/(1+x))dx  =(βˆ‚/(βˆ‚aβˆ‚b))∣_(a=0,b=βˆ’1) ∫_0 ^1 x^a (1βˆ’x^2 )^b dxβˆ’(βˆ‚/(βˆ‚aβˆ‚b))∣_(a=1,b=βˆ’1) ∫_0 ^1 x^a (1βˆ’x^2 )^b dxβˆ’{∫((ln(1+x){ln(1+x)+ln(x/(1+x))})/(1+x))}_0 ^1   =(βˆ‚/(βˆ‚aβˆ‚b))∣_(a=0,b=βˆ’1) (1/2)∫_0 ^1 u^((aβˆ’1)/2) (1βˆ’u)^b duβˆ’(βˆ‚/(βˆ‚aβˆ‚b))∣_(a=1,b=βˆ’1) (1/2)∫_0 ^1 u^((aβˆ’1)/2) (1βˆ’u)^b duβˆ’{∫((ln^2 (1+x))/(1+x))dx+∫((ln(1βˆ’(1/(1+x))))/(1+x))ln (1+x)dx}_0 ^1   =(βˆ‚/(βˆ‚aβˆ‚b))∣_(a=0,b=βˆ’1) (1/2)B(((a+1)/2),b+1)βˆ’(βˆ‚/(βˆ‚aβˆ‚b))∣_(a=1,b=βˆ’1) (1/2)B(((a+1)/2),b+1)βˆ’(1/3)ln^3 2+Ξ£_(n=1) ^∞ ∫_0 ^1 (((1+x)^(βˆ’n) )/n)βˆ™((ln (1+x))/(1+x))dx  =(3/2)ΞΆ(3)βˆ’(Ο€^2 /4)ln2βˆ’(1/3)ln^3 2+Ξ£_(n=1) ^∞ (1/n){∫_0 ^1 (1+x)^(βˆ’nβˆ’1) ln(1+x)dx}  =(3/2)ΞΆ(3)βˆ’(Ο€^2 /4)ln2βˆ’(1/3)ln^3 2+Ξ£_(n=1) ^∞ (1/n){(((1+x)^(βˆ’n) )/(βˆ’n))ln(1+x)βˆ’βˆ«(((1+x)^(βˆ’nβˆ’1) )/(βˆ’n))dx}_0 ^1   =(3/2)ΞΆ(3)βˆ’(Ο€^2 /4)ln2βˆ’(1/3)ln^3 2βˆ’Ξ£_(n=1) ^∞ (((1+x)^(βˆ’n) ln(1+x))/n^2 )∣_0 ^1 +Ξ£_(n=1) ^∞ (((1+x)^(βˆ’n) )/n^3 )∣_0 ^1   =(3/2)ΞΆ(3)βˆ’(Ο€^2 /4)ln2βˆ’(1/3)ln^3 2βˆ’Li_2 ((1/(1+x)))ln(1+x)∣_0 ^1 βˆ’Li_3 ((1/(1+x)))∣_0 ^1   =(3/2)ΞΆ(3)βˆ’(Ο€^2 /4)ln2βˆ’(1/3)ln^3 2βˆ’ln2Li_2 ((1/2))βˆ’Li_3 ((1/2))+Li_3 (1)  =ans...

Ο•=∫01lnxln(1βˆ’x)1+xdx=∫01lnxln(1βˆ’x2)1+xβˆ’βˆ«01lnxln(1+x)1+xdx=∫01lnxln(1βˆ’x2)1βˆ’x2dxβˆ’βˆ«01xlnxln(1βˆ’x2)1βˆ’x2dxβˆ’βˆ«01lnxln(1+x)1+xdx=βˆ‚βˆ‚aβˆ‚b∣a=0,b=βˆ’1∫01xa(1βˆ’x2)bdxβˆ’βˆ‚βˆ‚aβˆ‚b∣a=1,b=βˆ’1∫01xa(1βˆ’x2)bdxβˆ’{∫ln(1+x){ln(1+x)+lnx1+x}1+x}01=βˆ‚βˆ‚aβˆ‚b∣a=0,b=βˆ’112∫01u(aβˆ’1)/2(1βˆ’u)bduβˆ’βˆ‚βˆ‚aβˆ‚b∣a=1,b=βˆ’112∫01u(aβˆ’1)/2(1βˆ’u)bduβˆ’{∫ln2(1+x)1+xdx+∫ln(1βˆ’11+x)1+xln(1+x)dx}01=βˆ‚βˆ‚aβˆ‚b∣a=0,b=βˆ’112B(a+12,b+1)βˆ’βˆ‚βˆ‚aβˆ‚b∣a=1,b=βˆ’112B(a+12,b+1)βˆ’13ln32+βˆ‘βˆžn=1∫01(1+x)βˆ’nnβ‹…ln(1+x)1+xdx=32ΞΆ(3)βˆ’Ο€24ln2βˆ’13ln32+βˆ‘βˆžn=11n{∫01(1+x)βˆ’nβˆ’1ln(1+x)dx}=32ΞΆ(3)βˆ’Ο€24ln2βˆ’13ln32+βˆ‘βˆžn=11n{(1+x)βˆ’nβˆ’nln(1+x)βˆ’βˆ«(1+x)βˆ’nβˆ’1βˆ’ndx}01=32ΞΆ(3)βˆ’Ο€24ln2βˆ’13ln32βˆ’βˆ‘βˆžn=1(1+x)βˆ’nln(1+x)n2∣01+βˆ‘βˆžn=1(1+x)βˆ’nn3∣01=32ΞΆ(3)βˆ’Ο€24ln2βˆ’13ln32βˆ’Li2(11+x)ln(1+x)∣01βˆ’Li3(11+x)∣01=32ΞΆ(3)βˆ’Ο€24ln2βˆ’13ln32βˆ’ln2Li2(12)βˆ’Li3(12)+Li3(1)=ans...

Commented by mnjuly1970 last updated on 04/Apr/21

great ...thanks alot...

great...thanksalot...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com