All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 137501 by mnjuly1970 last updated on 03/Apr/21
....advanced....calculus....provethat::Ο=β«01ln(x).ln(1βx)1+xdx=138ΞΆ(3)βΟ24ln(2)....
Answered by ΓΓ―= last updated on 04/Apr/21
Ο=β«01lnxln(1βx)1+xdx=β«01lnxln(1βx2)1+xββ«01lnxln(1+x)1+xdx=β«01lnxln(1βx2)1βx2dxββ«01xlnxln(1βx2)1βx2dxββ«01lnxln(1+x)1+xdx=ββaβbβ£a=0,b=β1β«01xa(1βx2)bdxβββaβbβ£a=1,b=β1β«01xa(1βx2)bdxβ{β«ln(1+x){ln(1+x)+lnx1+x}1+x}01=ββaβbβ£a=0,b=β112β«01u(aβ1)/2(1βu)bduβββaβbβ£a=1,b=β112β«01u(aβ1)/2(1βu)bduβ{β«ln2(1+x)1+xdx+β«ln(1β11+x)1+xln(1+x)dx}01=ββaβbβ£a=0,b=β112B(a+12,b+1)βββaβbβ£a=1,b=β112B(a+12,b+1)β13ln32+ββn=1β«01(1+x)βnnβ ln(1+x)1+xdx=32ΞΆ(3)βΟ24ln2β13ln32+ββn=11n{β«01(1+x)βnβ1ln(1+x)dx}=32ΞΆ(3)βΟ24ln2β13ln32+ββn=11n{(1+x)βnβnln(1+x)ββ«(1+x)βnβ1βndx}01=32ΞΆ(3)βΟ24ln2β13ln32βββn=1(1+x)βnln(1+x)n2β£01+ββn=1(1+x)βnn3β£01=32ΞΆ(3)βΟ24ln2β13ln32βLi2(11+x)ln(1+x)β£01βLi3(11+x)β£01=32ΞΆ(3)βΟ24ln2β13ln32βln2Li2(12)βLi3(12)+Li3(1)=ans...
Commented by mnjuly1970 last updated on 04/Apr/21
great...thanksalot...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com