Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 137518 by Lordose last updated on 03/Apr/21

Ω = ∫_0 ^( ∞) ((u^2 +2)/(u^4 +2u^2 +2))du

Ω=0u2+2u4+2u2+2du

Answered by mathmax by abdo last updated on 03/Apr/21

Φ =∫_0 ^∞  ((x^2  +2)/(x^4  +2x^2  +2))dx ⇒Φ =(1/2)∫_(−∞) ^(+∞)  ((x^2  +2)/(x^4  +2x^2  +2))dx let  ϕ(z)=((z^2  +2)/(z^4  +2z^2  +2))  poles of ϕ?  z^4 +2z^2  +2=0 ⇒t^2  +2t+2=0 (t=x^2 )  Δ^′  =1−2=−1 ⇒t_1 =−1+i  and t_2 =−1−i  t_1 =(√2)(−(1/( (√2)))+(i/( (√2)))) =(√2)e^((i3π)/4)   and t_2 =(√2)e^(−((i3π)/4))   ⇒ϕ(z)=((z^2  +2)/((z^2 −(√2)e^((i3π)/4) )(z^2 −(√2)e^(−((i3π)/4)) )))  let  α =(√(√2)) ⇒  ϕ(z)=((z^2 +2)/((z−αe^((i3π)/8) )(z+α e^((i3π)/8) )(z−αe^(−((i3π)/8)) )(z+α e^(−i((3π)/8)) )))  ⇒∫_R ϕ(z)dz =2iπ{ Res(ϕ,αe^((i3π)/8) ) +Res(ϕ,−αe^(−((i3π)/8)) )}  Res(ϕ,αe^((i3π)/8) ) =((α^2  e^((i3π)/4)  +2)/(2αe^((i3π)/8)   (√2)(2isin(((3π)/4)))))  =((α^2  e^((i3π)/4)  +2)/(4iα)) e^(−((i3π)/8))   Res(ϕ ,−α e^(−((i3π)/8)) ) =((α^2  e^(−((3πi)/4))  +2)/(−2α e^(−((i3π)/8))  (−(√2))(2isin(((3π)/4))))  =((α^2  e^(−i((3π)/4))  +2)/(4iα)) e^((i3π)/8)  ⇒  ∫_R   ϕ(z)dz =2iπ{((α^2  e^((i3π)/4)  +2)/(4iα))e^(−((i3π)/8))  +((α^2  e^(−((i3π)/4))  +2)/(4iα)) e^((i3π)/8) }  =(π/(2α)){  α^2  e^((i3π)/8)  +2e^(−((i3π)/8))    +α^2  e^(−((i3π)/8))  +2e^((i3π)/8) }  =(π/(2α)){2α^2  cos(((3π)/8)) +4cos(((3π)/8))}  =(π/(2α))(2α^2  +4)cos(((3π)/8)) =(π/α)(α^2 +2)cos(((3π)/8))  =(π/( (√(√2))))((√2)+2)cos(((3π)/8)) =2Φ  cos(((3π)/8))=cos((π/8)+(π/4))=cos((π/8))cos((π/4))−sin((π/8))sin((π/4))  =((√(2+(√2)))/2)×(1/( (√2))) −((√(2−(√2)))/2)×(1/( (√2)))  and Φ =(π/(2(√(√2))))(2+(√2))cos(((3π)/8))

Φ=0x2+2x4+2x2+2dxΦ=12+x2+2x4+2x2+2dxletφ(z)=z2+2z4+2z2+2polesofφ?z4+2z2+2=0t2+2t+2=0(t=x2)Δ=12=1t1=1+iandt2=1it1=2(12+i2)=2ei3π4andt2=2ei3π4φ(z)=z2+2(z22ei3π4)(z22ei3π4)letα=2φ(z)=z2+2(zαei3π8)(z+αei3π8)(zαei3π8)(z+αei3π8)Rφ(z)dz=2iπ{Res(φ,αei3π8)+Res(φ,αei3π8)}Res(φ,αei3π8)=α2ei3π4+22αei3π82(2isin(3π4))=α2ei3π4+24iαei3π8Res(φ,αei3π8)=α2e3πi4+22αei3π8(2)(2isin(3π4)=α2ei3π4+24iαei3π8Rφ(z)dz=2iπ{α2ei3π4+24iαei3π8+α2ei3π4+24iαei3π8}=π2α{α2ei3π8+2ei3π8+α2ei3π8+2ei3π8}=π2α{2α2cos(3π8)+4cos(3π8)}=π2α(2α2+4)cos(3π8)=πα(α2+2)cos(3π8)=π2(2+2)cos(3π8)=2Φcos(3π8)=cos(π8+π4)=cos(π8)cos(π4)sin(π8)sin(π4)=2+22×12222×12andΦ=π22(2+2)cos(3π8)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com