All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 137518 by Lordose last updated on 03/Apr/21
Ω=∫0∞u2+2u4+2u2+2du
Answered by mathmax by abdo last updated on 03/Apr/21
Φ=∫0∞x2+2x4+2x2+2dx⇒Φ=12∫−∞+∞x2+2x4+2x2+2dxletφ(z)=z2+2z4+2z2+2polesofφ?z4+2z2+2=0⇒t2+2t+2=0(t=x2)Δ′=1−2=−1⇒t1=−1+iandt2=−1−it1=2(−12+i2)=2ei3π4andt2=2e−i3π4⇒φ(z)=z2+2(z2−2ei3π4)(z2−2e−i3π4)letα=2⇒φ(z)=z2+2(z−αei3π8)(z+αei3π8)(z−αe−i3π8)(z+αe−i3π8)⇒∫Rφ(z)dz=2iπ{Res(φ,αei3π8)+Res(φ,−αe−i3π8)}Res(φ,αei3π8)=α2ei3π4+22αei3π82(2isin(3π4))=α2ei3π4+24iαe−i3π8Res(φ,−αe−i3π8)=α2e−3πi4+2−2αe−i3π8(−2)(2isin(3π4)=α2e−i3π4+24iαei3π8⇒∫Rφ(z)dz=2iπ{α2ei3π4+24iαe−i3π8+α2e−i3π4+24iαei3π8}=π2α{α2ei3π8+2e−i3π8+α2e−i3π8+2ei3π8}=π2α{2α2cos(3π8)+4cos(3π8)}=π2α(2α2+4)cos(3π8)=πα(α2+2)cos(3π8)=π2(2+2)cos(3π8)=2Φcos(3π8)=cos(π8+π4)=cos(π8)cos(π4)−sin(π8)sin(π4)=2+22×12−2−22×12andΦ=π22(2+2)cos(3π8)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com