All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 137536 by Mathspace last updated on 03/Apr/21
calculte∫−∞∞sin(πx2)(x2+2x+2)2dx
Answered by mathmax by abdo last updated on 04/Apr/21
letf(a)=∫−∞+∞sin(πx2)x2+2x+adxwitha>1wehavef′(a)=−∫−∞+∞sin(πx2)(x2+2x+a)2⇒f′(2)=−∫−∞+∞sin(πx2)(x2+2x+2)2⇒∫−∞+∞sin(πx2)(x2+2x+2)2=−f′(2)wehavef(a)=Im(∫−∞+∞eiπx2x2+2x+adx)letφ(z)=eiπz2z2+2z+apolesofφ?Δ′=1−a<0⇒z1=−1+ia−1andz2=−1−ia−1φ(z)=eiπz2(z−z1)(z−z2)residustheorem⇒∫−∞+∞φ(z)dz=2iπRes(φ,z1)=2iπ×eiπz122ia−1=πa−1eiπ{1−2ia−1−a+1)=πa−1eiπ{2−a−2ia−1}=πa−1eiπ(2−a).e2πa−1=πe2πa−1a−1{cos(π(2−a))+isin(π(2−a))}⇒f(a)=−πe2πa−1a−1.sin(πa)⇒−f′(a)=π(e2πa−1a−1),sin(πa)+π2cos(πa).e2πa−1a−1but(e2πa−1a−1)′=2π2a−1e2πa−1.a−1−e2πa−1.12a−1a−1=πe2πa−1−12a−1e2πa−1a−1=(2πa−1−1)e2πa−12(a−1)a−1⇒f′(a)=−π2(2πa−1−1)e2πa−1(a−1)a−1sin(πa)−π2cos(πa).e2πa−1a−1⇒f′(2)=−π2(2π−1)e2π1.0−π2e2π=−π2e2π⇒∫−∞+∞sin(πx2)(x2+2x+2)2=π2e2π
Terms of Service
Privacy Policy
Contact: info@tinkutara.com