Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 137536 by Mathspace last updated on 03/Apr/21

calculte ∫_(−∞) ^∞  ((sin(πx^2 ))/((x^2 +2x+2)^2 ))dx

calcultesin(πx2)(x2+2x+2)2dx

Answered by mathmax by abdo last updated on 04/Apr/21

let f(a)=∫_(−∞) ^(+∞)  ((sin(πx^2 ))/(x^2  +2x+a))dx  with a>1  we have f^′ (a)=−∫_(−∞) ^(+∞)  ((sin(πx^2 ))/((x^2  +2x+a)^2 )) ⇒f^′ (2)=−∫_(−∞) ^(+∞)  ((sin(πx^2 ))/((x^2  +2x+2)^2 )) ⇒  ∫_(−∞) ^(+∞)  ((sin(πx^2 ))/((x^2  +2x+2)^2 ))=−f^′ (2)  we have f(a)=Im(∫_(−∞) ^(+∞)  (e^(iπx^2 ) /(x^2  +2x+a))dx) let ϕ(z)=(e^(iπz^2 ) /(z^2  +2z+a))  poles of ϕ?  Δ^′  =1−a<0 ⇒z_1 =−1+i(√(a−1))  and z_2 =−1−i(√(a−1))  ϕ(z)=(e^(iπz^2 ) /((z−z_1 )(z−z_2 )))  residus theorem ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,z_1 ) =2iπ×(e^(iπz_1 ^2 ) /(2i(√(a−1))))  =(π/( (√(a−1)))) e^(iπ{1−2i(√(a−1))−a+1))  =(π/( (√(a−1)))) e^(iπ{2−a−2i(√(a−1))})   =(π/( (√(a−1)))) e^(iπ(2−a)) .e^(2π(√(a−1))) =((πe^(2π(√(a−1))) )/( (√(a−1)))){cos(π(2−a))+isin(π(2−a))} ⇒  f(a)=−((π e^(2π(√(a−1))) )/( (√(a−1)))).sin(πa) ⇒  −f^′ (a) =π((e^(2π(√(a−1))) /( (√(a−1)))))^, sin(πa) +π^2 cos(πa).(e^(2π(√(a−1))) /( (√(a−1))))  but  ((e^(2π(√(a−1))) /( (√(a−1)))))^′  =((((2π)/(2(√(a−1))))e^(2π(√(a−1)))  .(√(a−1))−e^(2π(√(a−1))) .(1/(2(√(a−1)))))/(a−1))  =((πe^(2π(√(a−1))) −(1/(2(√(a−1))))e^(2π(√(a−1))) )/(a−1)) =(((2π(√(a−1))−1)e^(2π(√(a−1))) )/(2(a−1)(√(a−1)))) ⇒  f^′ (a)=−(π/2)(((2π(√(a−1))−1)e^(2π(√(a−1))) )/((a−1)(√(a−1)))) sin(πa) −π^2 cos(πa).(e^(2π(√(a−1))) /( (√(a−1))))  ⇒f^′ (2)=−(π/2)(((2π−1)e^(2π) )/1).0  −π^2  e^(2π)  =−π^2  e^(2π)  ⇒  ∫_(−∞) ^(+∞)  ((sin(πx^2 ))/((x^2  +2x+2)^2 )) =π^2  e^(2π)

letf(a)=+sin(πx2)x2+2x+adxwitha>1wehavef(a)=+sin(πx2)(x2+2x+a)2f(2)=+sin(πx2)(x2+2x+2)2+sin(πx2)(x2+2x+2)2=f(2)wehavef(a)=Im(+eiπx2x2+2x+adx)letφ(z)=eiπz2z2+2z+apolesofφ?Δ=1a<0z1=1+ia1andz2=1ia1φ(z)=eiπz2(zz1)(zz2)residustheorem+φ(z)dz=2iπRes(φ,z1)=2iπ×eiπz122ia1=πa1eiπ{12ia1a+1)=πa1eiπ{2a2ia1}=πa1eiπ(2a).e2πa1=πe2πa1a1{cos(π(2a))+isin(π(2a))}f(a)=πe2πa1a1.sin(πa)f(a)=π(e2πa1a1),sin(πa)+π2cos(πa).e2πa1a1but(e2πa1a1)=2π2a1e2πa1.a1e2πa1.12a1a1=πe2πa112a1e2πa1a1=(2πa11)e2πa12(a1)a1f(a)=π2(2πa11)e2πa1(a1)a1sin(πa)π2cos(πa).e2πa1a1f(2)=π2(2π1)e2π1.0π2e2π=π2e2π+sin(πx2)(x2+2x+2)2=π2e2π

Terms of Service

Privacy Policy

Contact: info@tinkutara.com