Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 137618 by I want to learn more last updated on 04/Apr/21

Commented by I want to learn more last updated on 04/Apr/21

Find the range of  nth  trajectory.  Here they wrote.       ((e^(n  −  1)  u^2 sin(2α))/g)  where    e  =  coefficient of restitution.

Findtherangeofnthtrajectory.Heretheywrote.en1u2sin(2α)gwheree=coefficientofrestitution.

Commented by Tawa11 last updated on 14/Sep/21

nice

nice

Answered by mr W last updated on 04/Apr/21

Commented by mr W last updated on 04/Apr/21

u_n cos θ_n =u_(n−1) cos θ_(n−1) =u cos α  u_n sin θ_n =e u_(n−1) sin θ_(n−1)     tan θ_n =e tan θ_(n−1) =e^2 tan θ_(n−2) =...               =e^(n−1)  tan θ_1 =e^(n−1) tan α  R_n =2 u_n cos θ_n ×((u_n sin θ_n )/g)         =((2(u_n cos θ_n )^2 tan θ_n )/g)         =((2u^2  cos^2  α e^(n−1) tan α)/g)         =((2u^2  cos α e^(n−1) sin α)/g)         =((e^(n−1) u^2  sin 2α)/g)         =e^(n−1) R_1   R=Σ_(k=1) ^n R_k =(1+e+e^2 +...e^(n−1) )R_1 =((1−e^n )/(1−e))R_1   R_(max) =lim_(n→∞) Σ_(k=1) ^n R_k =(R_1 /(1−e))=((u^2 sin 2α)/((1−e)g))

uncosθn=un1cosθn1=ucosαunsinθn=eun1sinθn1tanθn=etanθn1=e2tanθn2=...=en1tanθ1=en1tanαRn=2uncosθn×unsinθng=2(uncosθn)2tanθng=2u2cos2αen1tanαg=2u2cosαen1sinαg=en1u2sin2αg=en1R1R=nk=1Rk=(1+e+e2+...en1)R1=1en1eR1Rmax=limnnk=1Rk=R11e=u2sin2α(1e)g

Commented by I want to learn more last updated on 04/Apr/21

Wow, i really appreciate sir. God bless you.

Wow,ireallyappreciatesir.Godblessyou.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com