Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 137650 by bemath last updated on 05/Apr/21

Answered by bemath last updated on 05/Apr/21

By Langrange multiplier  f(x,y,λ)= x^2 +y^2 +λ(6x^2 +2xy+6y^2 −9)  (∂f/∂x) = 2x+λ(12x+2y)=0  ⇒x+λ(6x+y)=0⇒λ=−(x/(6x+y))  (∂f/∂y)=2y+λ(2x+12y)=0  ⇒y+λ(x+6y)=0⇒λ=−(y/(x+6y))  ⇔ (x/(6x+y)) = (y/(x+6y))  ⇒x^2 +6xy=y^2 +6xy  it follows that x^2 =y^2  or  { ((x=y)),((x=−y)) :}  (∂f/∂λ)= 6x^2 +2xy+6y^2 =9  ⇒12x^2 +2xy=9  case(1)x=y ⇒14x^2 =9   f(x,y) = x^2 +y^2  = (9/7)  case(2)x=−y ⇒10x^2 =9  f(x,y) = (9/5)  Thus maximum value is (9/5)

$${By}\:{Langrange}\:{multiplier} \\ $$$${f}\left({x},{y},\lambda\right)=\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\lambda\left(\mathrm{6}{x}^{\mathrm{2}} +\mathrm{2}{xy}+\mathrm{6}{y}^{\mathrm{2}} −\mathrm{9}\right) \\ $$$$\frac{\partial{f}}{\partial{x}}\:=\:\mathrm{2}{x}+\lambda\left(\mathrm{12}{x}+\mathrm{2}{y}\right)=\mathrm{0} \\ $$$$\Rightarrow{x}+\lambda\left(\mathrm{6}{x}+{y}\right)=\mathrm{0}\Rightarrow\lambda=−\frac{{x}}{\mathrm{6}{x}+{y}} \\ $$$$\frac{\partial{f}}{\partial{y}}=\mathrm{2}{y}+\lambda\left(\mathrm{2}{x}+\mathrm{12}{y}\right)=\mathrm{0} \\ $$$$\Rightarrow{y}+\lambda\left({x}+\mathrm{6}{y}\right)=\mathrm{0}\Rightarrow\lambda=−\frac{{y}}{{x}+\mathrm{6}{y}} \\ $$$$\Leftrightarrow\:\frac{{x}}{\mathrm{6}{x}+{y}}\:=\:\frac{{y}}{{x}+\mathrm{6}{y}} \\ $$$$\Rightarrow{x}^{\mathrm{2}} +\mathrm{6}{xy}={y}^{\mathrm{2}} +\mathrm{6}{xy} \\ $$$${it}\:{follows}\:{that}\:{x}^{\mathrm{2}} ={y}^{\mathrm{2}} \:{or}\:\begin{cases}{{x}={y}}\\{{x}=−{y}}\end{cases} \\ $$$$\frac{\partial{f}}{\partial\lambda}=\:\mathrm{6}{x}^{\mathrm{2}} +\mathrm{2}{xy}+\mathrm{6}{y}^{\mathrm{2}} =\mathrm{9} \\ $$$$\Rightarrow\mathrm{12}{x}^{\mathrm{2}} +\mathrm{2}{xy}=\mathrm{9} \\ $$$${case}\left(\mathrm{1}\right){x}={y}\:\Rightarrow\mathrm{14}{x}^{\mathrm{2}} =\mathrm{9}\: \\ $$$${f}\left({x},{y}\right)\:=\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \:=\:\frac{\mathrm{9}}{\mathrm{7}} \\ $$$${case}\left(\mathrm{2}\right){x}=−{y}\:\Rightarrow\mathrm{10}{x}^{\mathrm{2}} =\mathrm{9} \\ $$$${f}\left({x},{y}\right)\:=\:\frac{\mathrm{9}}{\mathrm{5}} \\ $$$${Thus}\:{maximum}\:{value}\:{is}\:\frac{\mathrm{9}}{\mathrm{5}} \\ $$$$ \\ $$

Commented by bemath last updated on 05/Apr/21

Answered by mr W last updated on 05/Apr/21

for a,b>0 we have  ((a+b)/2)≥(√(ab))    9=6(x^2 +y^2 )+2xy≥6(x^2 +y^2 )−(x^2 +y^2 )=5(x^2 +y^2 )  ⇒x^2 +y^2 ≤(9/5)  ⇒maximum of x^2 +y^2 =(9/5)    9=6(x^2 +y^2 )+2xy≤6(x^2 +y^2 )+(x^2 +y^2 )=7(x^2 +y^2 )  ⇒x^2 +y^2 ≥(9/7)  ⇒minimum of x^2 +y^2 =(9/7)

$${for}\:{a},{b}>\mathrm{0}\:{we}\:{have} \\ $$$$\frac{{a}+{b}}{\mathrm{2}}\geqslant\sqrt{{ab}} \\ $$$$ \\ $$$$\mathrm{9}=\mathrm{6}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)+\mathrm{2}{xy}\geqslant\mathrm{6}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)−\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)=\mathrm{5}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right) \\ $$$$\Rightarrow{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \leqslant\frac{\mathrm{9}}{\mathrm{5}} \\ $$$$\Rightarrow{maximum}\:{of}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\frac{\mathrm{9}}{\mathrm{5}} \\ $$$$ \\ $$$$\mathrm{9}=\mathrm{6}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)+\mathrm{2}{xy}\leqslant\mathrm{6}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)+\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)=\mathrm{7}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right) \\ $$$$\Rightarrow{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \geqslant\frac{\mathrm{9}}{\mathrm{7}} \\ $$$$\Rightarrow{minimum}\:{of}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\frac{\mathrm{9}}{\mathrm{7}} \\ $$

Commented by bemath last updated on 05/Apr/21

AM−GM

$${AM}−{GM} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com