Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 137694 by Mathspace last updated on 05/Apr/21

find ∫   (x^3 /((x−3)^3 (x(√2)+7)^4 ))dx

findx3(x3)3(x2+7)4dx

Commented by MJS_new last updated on 05/Apr/21

you can either decompose or apply Ostrogradski′s  Method; it′s no fun typing with these constants...

youcaneitherdecomposeorapplyOstrogradskisMethod;itsnofuntypingwiththeseconstants...

Commented by MJS_new last updated on 05/Apr/21

if you want to study the methods try  ∫(x^3 /((x−1)^3 (x+1)^4 ))dx=  =−(((x^2 +x+4)(3x^2 −1))/(48(x−1)^2 (x+1)^3 ))+(1/(32))ln ∣((x+1)/(x−1))∣ +C  your example uses the same path with nasty constants  ∫(x^3 /((x−3)^3 ((√2)x+7)^4 ))dx=  =(((1109519964−784602612(√2))x^4 −(18723385548−13239011439(√2))x^3 +(116325008541−82282349527(√2))x^2 −(314307560196−222235080396(√2))x+311134260024−219840177123(√2))/(171774906(x−3)^2 ((√2)x+7)^3 ))+((9(115502365−81673862(√2)))/(887503681))ln ∣((x−3)/( (√2)x+7))∣ +C  please check for typos if you can

ifyouwanttostudythemethodstryx3(x1)3(x+1)4dx==(x2+x+4)(3x21)48(x1)2(x+1)3+132lnx+1x1+Cyourexampleusesthesamepathwithnastyconstantsx3(x3)3(2x+7)4dx==(11095199647846026122)x4(18723385548132390114392)x3+(116325008541822823495272)x2(3143075601962222350803962)x+3111342600242198401771232171774906(x3)2(2x+7)3+9(115502365816738622)887503681lnx32x+7+Cpleasecheckfortyposifyoucan

Commented by mathmax by abdo last updated on 06/Apr/21

thank you sir

thankyousir

Answered by mathmax by abdo last updated on 06/Apr/21

I=∫  (x^3 /((x−3)^3 (x(√2)+7)^4 ))dx ⇒I=∫  (x^3 /((((x−3)/(x(√2)+7)))^3 (x(√2)+7)^7 ))dx  we do the changement ((x−3)/(x(√2)+7))=t ⇒x−3=(√2)tx +7t ⇒  (1−(√2)t)x=7t+3 ⇒x =((7t+3)/(1−(√2)t)) ⇒(dx/dt) =((7(1−(√2)t)−(7t+3)(−(√2)))/((1−(√2)t)^2 ))  =((7+3(√2))/((1−(√2)t)^2 ))  also  x(√2)+7 =(√2).((7t+3)/(1−(√2)t)) +7 =((7(√2)t+3(√2)+7−7(√2)t)/(1−(√2)t))  =((3(√2)+7)/(1−(√2)t)) ⇒I  =∫  (1/(t^3 (((3(√2)+7)/(1−(√2)t)))^7 )).((3(√2)+7)/((1−(√2)t)^2 ))(((7t+3)/(1−(√2)t)))^3  dt  =(1/((3(√2)+7)^6 ))∫   (((1−(√2)t)^7 .(7t+3)^3 )/((1−(√2)t)^3  .t^3 ))dt  =(1/((3(√2)+7)^6 ))∫  (((1−(√2)t)^4 (7t+3)^3 )/t^3 )dt  we have  (1−(√2)t)^4  =(1−2(√2)t +2t^2 )^2  =(2t^2  −2(√2)t +1)^2   =4t^4  +8t^2  +1 −4(√2)t^3 +2t^2 −2(√2)t and   (7t+3)^3  =7^3  t^3  +3.(7t)^2 .3 +3(7t).3^2  +3^3   =343 t^3  +441t^2  +189t +27  ⇒(1−(√2)t)^4  =(4t^4 −4(√2)t^3  +10t^2 −2(√2)t+1)(343t^3  +441t^2  +189t +27)   ..rest to finish the calculus...

I=x3(x3)3(x2+7)4dxI=x3(x3x2+7)3(x2+7)7dxwedothechangementx3x2+7=tx3=2tx+7t(12t)x=7t+3x=7t+312tdxdt=7(12t)(7t+3)(2)(12t)2=7+32(12t)2alsox2+7=2.7t+312t+7=72t+32+772t12t=32+712tI=1t3(32+712t)7.32+7(12t)2(7t+312t)3dt=1(32+7)6(12t)7.(7t+3)3(12t)3.t3dt=1(32+7)6(12t)4(7t+3)3t3dtwehave(12t)4=(122t+2t2)2=(2t222t+1)2=4t4+8t2+142t3+2t222tand(7t+3)3=73t3+3.(7t)2.3+3(7t).32+33=343t3+441t2+189t+27(12t)4=(4t442t3+10t222t+1)(343t3+441t2+189t+27)..resttofinishthecalculus...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com