Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 137768 by mr W last updated on 06/Apr/21

Commented by mr W last updated on 06/Apr/21

find the maximal area of the shadow  in terms of r, h, H and d.

$${find}\:{the}\:{maximal}\:{area}\:{of}\:{the}\:{shadow} \\ $$$${in}\:{terms}\:{of}\:{r},\:{h},\:{H}\:{and}\:{d}. \\ $$

Answered by mr W last updated on 07/Apr/21

Commented by ajfour last updated on 08/Apr/21

let C be origin.  CP^(−) =rcos φ(cos θi+sin θk)             +rsin φj  S≡(−d,0,H−h)  r^� =−di+(H−h)k   +λ{(rcos φcos θ+d)i+rsin φj               +(rcos φsin θ−H+h)k}  let   H−h+λ(rcos φsin θ−H+h)       =−h  ⇒ λ=(H/(H−h−rcos φsin θ))  r^� =(−d+((H[rcos φcos θ+d])/(H−h−rcos φsin θ)))i     +((Hrsin φj)/(H−h−rcos φsin θ))  let  sin φ=0  ⇒  p_1 , p_2 =−d±((H(rcos θ+d))/(H−h∓rsin θ))  2a=((H(rcos θ+d))/(H−h−rsin θ))+((H(rcos θ+d))/(H−h+rsin θ))  b=max(((Hrsin φ)/(H−h−rcos φsin θ)))  (∂b/∂φ)=((Hr{cos φ(H−h−rcos φsin θ)−sin φ(rsin φsin θ)})/((H−h−rcos φsin θ)^2 ))  (∂b/∂φ)=0  ⇒  tan φ=((H−h−rcos φsin θ)/(rsin φsin θ))  rsin θ=(H−h)cos φ  cos φ=((rsin θ)/(H−h))          b^2 =(((Hr)^2 {1−((r^2 sin^2 θ)/((H−h)^2 ))})/({H−h−((r^2 sin^2 θ)/(H−h))}^2 ))  A^2 =(πab)^2   =((π/2))^2 [(((Hr)^2 {1−((r^2 sin^2 θ)/((H−h)^2 ))})/({H−h−((r^2 sin^2 θ)/(H−h))}^2 ))]  ×H^2 {((rcos θ+d)/(H−h−rsin θ))+((rcos θ+d)/(H−h+rsin θ))}^2   for  A_(max)    ,  ((d(A^2 ))/dθ)=0  A^2 =((π^2 H^4 (H−h)^2 r^2 (rcos θ+d)^2 )/({(H−h)^2 −r^2 sin^2 θ}^3 ))  lets say  rcos θ=t  A^2 =((π^2 H^4 (H−h)^2 r^2 (t+d)^2 )/({(H−h)^2 −r^2 +t^2 }^3 ))  ((d(A^2 ))/dt)=0 ⇒  2(t+d){(H−h)^2 −r^2 +t^2 }^3   =3(2t)(t+d)^2 {(H−h)^2 −r^2 +t^2 }^2   ⇒ {(H−h)^2 −r^2 +t^2 }=3t(t+d)  2t^2 +(3d)t−(H−h)^2 +r^2 =0  t=((−3d+(√(9d^2 +8(H−h)^2 −8r^2 )))/4)  A_m ^2 =((π^2 H^4 (H−h)^2 r^2 )/(27t^3 (t+d)))

$${let}\:{C}\:{be}\:{origin}. \\ $$$$\overline {{CP}}={r}\mathrm{cos}\:\phi\left(\mathrm{cos}\:\theta{i}+\mathrm{sin}\:\theta{k}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:+{r}\mathrm{sin}\:\phi{j} \\ $$$${S}\equiv\left(−{d},\mathrm{0},{H}−{h}\right) \\ $$$$\bar {{r}}=−{di}+\left({H}−{h}\right){k} \\ $$$$\:+\lambda\left\{\left({r}\mathrm{cos}\:\phi\mathrm{cos}\:\theta+{d}\right){i}+{r}\mathrm{sin}\:\phi{j}\right. \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:\:\:\:+\left({r}\mathrm{cos}\:\phi\mathrm{sin}\:\theta−{H}+{h}\right){k}\right\} \\ $$$${let}\:\:\:{H}−{h}+\lambda\left({r}\mathrm{cos}\:\phi\mathrm{sin}\:\theta−{H}+{h}\right) \\ $$$$\:\:\:\:\:=−{h} \\ $$$$\Rightarrow\:\lambda=\frac{{H}}{{H}−{h}−{r}\mathrm{cos}\:\phi\mathrm{sin}\:\theta} \\ $$$$\bar {{r}}=\left(−{d}+\frac{{H}\left[{r}\mathrm{cos}\:\phi\mathrm{cos}\:\theta+{d}\right]}{{H}−{h}−{r}\mathrm{cos}\:\phi\mathrm{sin}\:\theta}\right){i} \\ $$$$\:\:\:+\frac{{Hr}\mathrm{sin}\:\phi{j}}{{H}−{h}−{r}\mathrm{cos}\:\phi\mathrm{sin}\:\theta} \\ $$$${let}\:\:\mathrm{sin}\:\phi=\mathrm{0} \\ $$$$\Rightarrow\:\:{p}_{\mathrm{1}} ,\:{p}_{\mathrm{2}} =−{d}\pm\frac{{H}\left({r}\mathrm{cos}\:\theta+{d}\right)}{{H}−{h}\mp{r}\mathrm{sin}\:\theta} \\ $$$$\mathrm{2}{a}=\frac{{H}\left({r}\mathrm{cos}\:\theta+{d}\right)}{{H}−{h}−{r}\mathrm{sin}\:\theta}+\frac{{H}\left({r}\mathrm{cos}\:\theta+{d}\right)}{{H}−{h}+{r}\mathrm{sin}\:\theta} \\ $$$${b}={max}\left(\frac{{Hr}\mathrm{sin}\:\phi}{{H}−{h}−{r}\mathrm{cos}\:\phi\mathrm{sin}\:\theta}\right) \\ $$$$\frac{\partial{b}}{\partial\phi}=\frac{{Hr}\left\{\mathrm{cos}\:\phi\left({H}−{h}−{r}\mathrm{cos}\:\phi\mathrm{sin}\:\theta\right)−\mathrm{sin}\:\phi\left({r}\mathrm{sin}\:\phi\mathrm{sin}\:\theta\right)\right\}}{\left({H}−{h}−{r}\mathrm{cos}\:\phi\mathrm{sin}\:\theta\right)^{\mathrm{2}} } \\ $$$$\frac{\partial{b}}{\partial\phi}=\mathrm{0}\:\:\Rightarrow \\ $$$$\mathrm{tan}\:\phi=\frac{{H}−{h}−{r}\mathrm{cos}\:\phi\mathrm{sin}\:\theta}{{r}\mathrm{sin}\:\phi\mathrm{sin}\:\theta} \\ $$$${r}\mathrm{sin}\:\theta=\left({H}−{h}\right)\mathrm{cos}\:\phi \\ $$$$\mathrm{cos}\:\phi=\frac{{r}\mathrm{sin}\:\theta}{{H}−{h}}\:\:\:\:\:\:\:\: \\ $$$${b}^{\mathrm{2}} =\frac{\left({Hr}\right)^{\mathrm{2}} \left\{\mathrm{1}−\frac{{r}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \theta}{\left({H}−{h}\right)^{\mathrm{2}} }\right\}}{\left\{{H}−{h}−\frac{{r}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \theta}{{H}−{h}}\right\}^{\mathrm{2}} } \\ $$$${A}^{\mathrm{2}} =\left(\pi{ab}\right)^{\mathrm{2}} \\ $$$$=\left(\frac{\pi}{\mathrm{2}}\right)^{\mathrm{2}} \left[\frac{\left({Hr}\right)^{\mathrm{2}} \left\{\mathrm{1}−\frac{{r}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \theta}{\left({H}−{h}\right)^{\mathrm{2}} }\right\}}{\left\{{H}−{h}−\frac{{r}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \theta}{{H}−{h}}\right\}^{\mathrm{2}} }\right] \\ $$$$×{H}^{\mathrm{2}} \left\{\frac{{r}\mathrm{cos}\:\theta+{d}}{{H}−{h}−{r}\mathrm{sin}\:\theta}+\frac{{r}\mathrm{cos}\:\theta+{d}}{{H}−{h}+{r}\mathrm{sin}\:\theta}\right\}^{\mathrm{2}} \\ $$$${for}\:\:{A}_{{max}} \:\:\:,\:\:\frac{{d}\left({A}^{\mathrm{2}} \right)}{{d}\theta}=\mathrm{0} \\ $$$${A}^{\mathrm{2}} =\frac{\pi^{\mathrm{2}} {H}^{\mathrm{4}} \left({H}−{h}\right)^{\mathrm{2}} {r}^{\mathrm{2}} \left({r}\mathrm{cos}\:\theta+{d}\right)^{\mathrm{2}} }{\left\{\left({H}−{h}\right)^{\mathrm{2}} −{r}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \theta\right\}^{\mathrm{3}} } \\ $$$${lets}\:{say}\:\:{r}\mathrm{cos}\:\theta={t} \\ $$$${A}^{\mathrm{2}} =\frac{\pi^{\mathrm{2}} {H}^{\mathrm{4}} \left({H}−{h}\right)^{\mathrm{2}} {r}^{\mathrm{2}} \left({t}+{d}\right)^{\mathrm{2}} }{\left\{\left({H}−{h}\right)^{\mathrm{2}} −{r}^{\mathrm{2}} +{t}^{\mathrm{2}} \right\}^{\mathrm{3}} } \\ $$$$\frac{{d}\left({A}^{\mathrm{2}} \right)}{{dt}}=\mathrm{0}\:\Rightarrow \\ $$$$\mathrm{2}\left({t}+{d}\right)\left\{\left({H}−{h}\right)^{\mathrm{2}} −{r}^{\mathrm{2}} +{t}^{\mathrm{2}} \right\}^{\mathrm{3}} \\ $$$$=\mathrm{3}\left(\mathrm{2}{t}\right)\left({t}+{d}\right)^{\mathrm{2}} \left\{\left({H}−{h}\right)^{\mathrm{2}} −{r}^{\mathrm{2}} +{t}^{\mathrm{2}} \right\}^{\mathrm{2}} \\ $$$$\Rightarrow\:\left\{\left({H}−{h}\right)^{\mathrm{2}} −{r}^{\mathrm{2}} +{t}^{\mathrm{2}} \right\}=\mathrm{3}{t}\left({t}+{d}\right) \\ $$$$\mathrm{2}{t}^{\mathrm{2}} +\left(\mathrm{3}{d}\right){t}−\left({H}−{h}\right)^{\mathrm{2}} +{r}^{\mathrm{2}} =\mathrm{0} \\ $$$${t}=\frac{−\mathrm{3}{d}+\sqrt{\mathrm{9}{d}^{\mathrm{2}} +\mathrm{8}\left({H}−{h}\right)^{\mathrm{2}} −\mathrm{8}{r}^{\mathrm{2}} }}{\mathrm{4}} \\ $$$${A}_{{m}} ^{\mathrm{2}} =\frac{\pi^{\mathrm{2}} {H}^{\mathrm{4}} \left({H}−{h}\right)^{\mathrm{2}} {r}^{\mathrm{2}} }{\mathrm{27}{t}^{\mathrm{3}} \left({t}+{d}\right)} \\ $$

Commented by mr W last updated on 08/Apr/21

great!

$${great}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com