Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 137787 by physicstutes last updated on 06/Apr/21

A string AB of lenght 2l has a particle attached to its midpoint C.   The ends A and B of the string are fastened to two fixed points  with A distance l vertically above B.With both parts of the string  taunt,the particle describes a horizontal circle about the line AB with  constant angular speed ω. If the tension in CA is three times  that in CB, prove that the angular velocity is 2(√(g/l)) .

$$\mathrm{A}\:\mathrm{string}\:{AB}\:\mathrm{of}\:\mathrm{lenght}\:\mathrm{2}{l}\:\mathrm{has}\:\mathrm{a}\:\mathrm{particle}\:\mathrm{attached}\:\mathrm{to}\:\mathrm{its}\:\mathrm{midpoint}\:\mathrm{C}.\: \\ $$$$\mathrm{The}\:\mathrm{ends}\:{A}\:\mathrm{and}\:{B}\:\mathrm{of}\:\mathrm{the}\:\mathrm{string}\:\mathrm{are}\:\mathrm{fastened}\:\mathrm{to}\:\mathrm{two}\:\mathrm{fixed}\:\mathrm{points} \\ $$$$\mathrm{with}\:{A}\:\mathrm{distance}\:{l}\:\mathrm{vertically}\:\mathrm{above}\:\mathrm{B}.\mathrm{With}\:\mathrm{both}\:\mathrm{parts}\:\mathrm{of}\:\mathrm{the}\:\mathrm{string} \\ $$$$\mathrm{taunt},\mathrm{the}\:\mathrm{particle}\:\mathrm{describes}\:\mathrm{a}\:\mathrm{horizontal}\:\mathrm{circle}\:\mathrm{about}\:\mathrm{the}\:\mathrm{line}\:{AB}\:\mathrm{with} \\ $$$$\mathrm{constant}\:\mathrm{angular}\:\mathrm{speed}\:\omega.\:\mathrm{If}\:\mathrm{the}\:\mathrm{tension}\:\mathrm{in}\:{CA}\:\mathrm{is}\:\mathrm{three}\:\mathrm{times} \\ $$$$\mathrm{that}\:\mathrm{in}\:{CB},\:\mathrm{prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{angular}\:\mathrm{velocity}\:\mathrm{is}\:\mathrm{2}\sqrt{\frac{\mathrm{g}}{{l}}}\:. \\ $$

Answered by mr W last updated on 06/Apr/21

Commented by mr W last updated on 06/Apr/21

AB=BC=CA=l  r=l cos 30°  T_1 =3T_2  as given  in Y−direction:  T_1  sin 30°=mg+T_2 sin 30°  3T_2  sin 30°=mg+T_2 sin 30°  2T_2  sin 30°=mg  ⇒T_2  =mg  ⇒T_1 =3mg  in X−direction:  mrω^2 =T_1 cos 30°+T_2 cos 30°=4mg cos 30°  ml cos 30°ω^2 =4mg cos 30°  lω^2 =4g  ⇒ω=2(√(g/l))

$${AB}={BC}={CA}={l} \\ $$$${r}={l}\:\mathrm{cos}\:\mathrm{30}° \\ $$$${T}_{\mathrm{1}} =\mathrm{3}{T}_{\mathrm{2}} \:{as}\:{given} \\ $$$${in}\:{Y}−{direction}: \\ $$$${T}_{\mathrm{1}} \:\mathrm{sin}\:\mathrm{30}°={mg}+{T}_{\mathrm{2}} \mathrm{sin}\:\mathrm{30}° \\ $$$$\mathrm{3}{T}_{\mathrm{2}} \:\mathrm{sin}\:\mathrm{30}°={mg}+{T}_{\mathrm{2}} \mathrm{sin}\:\mathrm{30}° \\ $$$$\mathrm{2}{T}_{\mathrm{2}} \:\mathrm{sin}\:\mathrm{30}°={mg} \\ $$$$\Rightarrow{T}_{\mathrm{2}} \:={mg} \\ $$$$\Rightarrow{T}_{\mathrm{1}} =\mathrm{3}{mg} \\ $$$${in}\:{X}−{direction}: \\ $$$${mr}\omega^{\mathrm{2}} ={T}_{\mathrm{1}} \mathrm{cos}\:\mathrm{30}°+{T}_{\mathrm{2}} \mathrm{cos}\:\mathrm{30}°=\mathrm{4}{mg}\:\mathrm{cos}\:\mathrm{30}° \\ $$$${ml}\:\mathrm{cos}\:\mathrm{30}°\omega^{\mathrm{2}} =\mathrm{4}{mg}\:\mathrm{cos}\:\mathrm{30}° \\ $$$${l}\omega^{\mathrm{2}} =\mathrm{4}{g} \\ $$$$\Rightarrow\omega=\mathrm{2}\sqrt{\frac{{g}}{{l}}} \\ $$

Commented by physicstutes last updated on 06/Apr/21

this is fantastic sir, i had never thought this is  an equilaterial triangle. Thank you so much sir

$$\mathrm{this}\:\mathrm{is}\:\mathrm{fantastic}\:\mathrm{sir},\:\mathrm{i}\:\mathrm{had}\:\mathrm{never}\:\mathrm{thought}\:\mathrm{this}\:\mathrm{is} \\ $$$$\mathrm{an}\:\mathrm{equilaterial}\:\mathrm{triangle}.\:\mathrm{Thank}\:\mathrm{you}\:\mathrm{so}\:\mathrm{much}\:\mathrm{sir} \\ $$

Commented by mr W last updated on 07/Apr/21

Terms of Service

Privacy Policy

Contact: info@tinkutara.com