Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 137817 by bramlexs22 last updated on 07/Apr/21

Let f(x)=x^2 −2x−3; x≥1 &  g(x)=1+(√(x+4)) ; x≥−4 then  the number of real solutions  of equation f(x)=g(x) is ...

Letf(x)=x22x3;x1& g(x)=1+x+4;x4then thenumberofrealsolutions ofequationf(x)=g(x)is...

Answered by MJS_new last updated on 07/Apr/21

x^2 −2x−3=1+(√(x+4))  x^2 −2x−4=(√(x+4))  (x^2 −2x−4)^2 =x+4  x^4 −4x^3 −4x^2 +15x+12=0  I found no ♮niceε exact solution  of the 4 solutions only 2 solve the given equation  x_1 ≈−1.56155  x_2 ≈3.79129  but because of x≥1 the only solution is x_2

x22x3=1+x+4 x22x4=x+4 (x22x4)2=x+4 x44x34x2+15x+12=0 Ifoundnoniceεexactsolution ofthe4solutionsonly2solvethegivenequation x11.56155 x23.79129 butbecauseofx1theonlysolutionisx2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com