All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 137829 by mnjuly1970 last updated on 07/Apr/21
.......nice..........calculus.....provethat::::Ο=β«01(log(1βx)x)2dx=2ΞΆ(2)....
Answered by EnterUsername last updated on 07/Apr/21
β«01(ln(1βx)x)2dx=β«01ln2x(1βx)2dx=[ln2x1βxβ2β«lnxx(1βx)dx]01=[ln2x1βxβ2β«(lnxx+lnx1βx)dx]01=[ln2x1βxβln2x]01β2β«01lnx1βxdx=2Οβ²(1)=2ββn=01(n+1)2=2ββn=11n2=2ΞΆ(2)=Ο23
Commented by mnjuly1970 last updated on 07/Apr/21
thanksalot...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com