Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 137837 by Ñï= last updated on 07/Apr/21

                       ∫_0 ^∞ ((sin x−sin x^2 )/x)=(π/4)                         ∫_0 ^∞ ((cos x−cos x^2 )/x)dx=−(γ/2)

0sinxsinx2x=π40cosxcosx2xdx=γ2

Answered by Dwaipayan Shikari last updated on 07/Apr/21

∫_0 ^∞ ((sin(x^α ))/x)dx     x^α =u⇒αx^(α−1) =(du/dx)  =(1/α)∫_0 ^∞ ((sin(u))/u)du=(π/(2α))  ∫_0 ^∞ ((sin(x))/x)−((sin(x^2 ))/x)dx  =(π/2)−(π/(2.2))=(π/4)

0sin(xα)xdxxα=uαxα1=dudx=1α0sin(u)udu=π2α0sin(x)xsin(x2)xdx=π2π2.2=π4

Answered by mnjuly1970 last updated on 07/Apr/21

   solution :::::     𝛗=∫_0 ^( ∞) ((sin(x)−sin(x^2 ))/x)dx         =∫_0 ^( ∞) ((sin(x))/x)dx−{∫_0 ^( ∞) ((sin(x^2 ))/x)dx=𝚿}        ∴ 𝛗= (π/2)−𝚿 ; where ( (π/2)=∫_0 ^( ∞) ((sin(x))/x)dx)            𝚿=^(⟨x^2 =t⟩) (1/2)∫_0 ^( ∞) ((sin(t))/(t^(1/2) .t^(1/2) ))dt=(1/2)∫_0 ^( ∞) ((sin(t))/t)dt=(π/4)        ∴                 𝛗=(π/2)−(π/4) =(π/4)

solution:::::ϕ=0sin(x)sin(x2)xdx=0sin(x)xdx{0sin(x2)xdx=Ψ}ϕ=π2Ψ;where(π2=0sin(x)xdx)Ψ=x2=t120sin(t)t12.t12dt=120sin(t)tdt=π4ϕ=π2π4=π4

Answered by mathmax by abdo last updated on 08/Apr/21

∫_0 ^∞  ((sinx−sin(x^2 ))/x)dx =∫_0 ^∞  ((sinx)/x)dx−∫_0 ^∞  ((sin(x^2 ))/x)dx=(π/2)−∫_0 ^∞  ((sin(x^2 ))/x)dx  but ∫_0 ^∞  ((sin(x^2 ))/x)dx =_(x=(√t))   ∫_0 ^∞   ((sint)/( (√t)))(dt/(2(√t)))=(1/2)∫_0 ^∞  ((sint)/t)dt =(π/4) ⇒  ∫_0 ^∞  ((sinx−sin(x^2 ))/x)dx =(π/2)−(π/4)=(π/4)

0sinxsin(x2)xdx=0sinxxdx0sin(x2)xdx=π20sin(x2)xdxbut0sin(x2)xdx=x=t0sinttdt2t=120sinttdt=π40sinxsin(x2)xdx=π2π4=π4

Answered by mathmax by abdo last updated on 08/Apr/21

let f(a)=∫_0 ^∞  ((cos(x^a ))/x)dx  changement x^a  =t give x=t^(1/a)   ⇒f(a)=(1/a)∫_0 ^∞  ((cos(t))/t^(1/a) )t^(a−1)  dt =(1/a)∫_0 ^∞  t^(a−(1/a)−1)  cost dt  =Re((1/a)∫_0 ^∞  e^(−it)  t^(a−(1/a)−1) dt) we have  ∫_0 ^∞   t^(a−(1/(a ))−1)  e^(−it)  =_(it=z)  ∫_0 ^∞   (−iz)^(a−(1/a)−1)  e^(−z)  (dz/i)  =(−i)(−i)^(a−(1/a) −1)  ∫_0 ^∞   z^(a−(1/a)−1)  e^(−z)  dz  =(e^(−((iπ)/2)) )^(a−(1/a))  Γ(a−(1/a)) =e^(−((iπ)/2)(a−(1/a)))  .Γ(a−(1/a)) ⇒  f(a)=Γ(a−(1/a)).cos((π/2)(a−(1/a))) ⇒∫_0 ^∞  ((cos(x^2 ))/x)dx  =f(2)=Γ(2−(1/2)).cos((π/2)(2−(1/2))) =Γ((3/2)).cos(π−(π/4))  =−((√2)/2)Γ((3/2)) .....be continued....

letf(a)=0cos(xa)xdxchangementxa=tgivex=t1af(a)=1a0cos(t)t1ata1dt=1a0ta1a1costdt=Re(1a0eitta1a1dt)wehave0ta1a1eit=it=z0(iz)a1a1ezdzi=(i)(i)a1a10za1a1ezdz=(eiπ2)a1aΓ(a1a)=eiπ2(a1a).Γ(a1a)f(a)=Γ(a1a).cos(π2(a1a))0cos(x2)xdx=f(2)=Γ(212).cos(π2(212))=Γ(32).cos(ππ4)=22Γ(32).....becontinued....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com