All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 137973 by mnjuly1970 last updated on 08/Apr/21
.......Advanced............Calculus.......provethat:::Ο=β«01ln(1βx)1+x2dx=Ο8ln(2)βG...βwhereGiscatalannumber...
Answered by EnterUsername last updated on 08/Apr/21
β«01ln(1βx)1+x2dx=β«0Ο4ln(1βtanΞΈ)dΞΈ=β«0Ο4ln(cosxβsinx)dxββ«0Ο4lncosxdx=β«0Ο4ln[2cos(x+Ο4)]dxβ(G2βΟln24)=Ο8ln2+β«0Ο4ln(sinx)dxβ(G2βΟln24)=Ο8ln2βG2βΟln24β(G2βΟln24)=Ο8ln2βG
Commented by mnjuly1970 last updated on 08/Apr/21
grateful...
Answered by mathmax by abdo last updated on 09/Apr/21
f(a)=β«01ln(1+ax)1+x2dxβfβ²(a)=β«01x(ax+1)(x2+1)dx=1aβ«01ax+1β1(ax+1)(x2+1)dx=1a[arctanx]01β1aβ«01dx(ax+1)(x2+1)=Ο4aβ1aβ«01dx(ax+1)(x2+1)letdecomposeF(x)=1(ax+1)(x2+1)F(x)=Ξ±ax+1+mx+nx2+1Ξ±=11a2+1=a21+a2limxβ+βxF(x)=0=Ξ±a+mβm=βa1+a2F(o)=1=Ξ±+nβn=1βa21+a2=11+a2βF(x)=a2(a2+1)(ax+1)+βaa2+1x+11+a2x2+1ββ«01F(x)dx=a2a2+1β«01dxax+1β1a2+1β«01axβ1x2+1dx=aa2+1[ln(ax+1)]01βa2(a2+1)β«012xx2+1dx+Ο4(a2+1)=aln(a+1)a2+1βa2(a2+1)ln(2)+Ο4(a2+1)βfβ²(a)=Ο4aβln(a+1)a2+1+ln22(a2+1)βΟ4a(a2+1)=Ο4a(1β1a2+1)βln(a+1)a2+1+ln22(a2+1)=Οa4βln(a+1)a2+1+ln22(a2+1)ββ«01fβ²(a)da=Ο4β«01adaββ«01ln(a+1)a2+1da+ln22β«01daa2+1=Ο4Γ12ββ«01ln(1+x)x2+1dx+ln22.Ο4=Ο8ββ«01ln(1+x)x2+1dx+Ο8ln2=f(1)=β«01ln(1+x)1+x2dxβ2β«01ln(1+x)x2+1dx=Ο8+Ο8ln2ββ«01ln(1+x)x2+1dx=Ο16+Ο16ln2?ifwewantβ«01ln(1βx)x2+1dxweusetheparametricf(a)=β«01ln(1βax)x2+1dx....becontinued....
Terms of Service
Privacy Policy
Contact: info@tinkutara.com