Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 137986 by ajfour last updated on 08/Apr/21

Commented by ajfour last updated on 08/Apr/21

Find maximum speed gained  by cylinder if motion is  initiated. Bottom corner is  hinged to ground.

Findmaximumspeedgainedbycylinderifmotionisinitiated.Bottomcornerishingedtoground.

Answered by mr W last updated on 08/Apr/21

Commented by mr W last updated on 11/Apr/21

let ω=−(dθ/dt)  sin φ=((r−(√2)r sin θ)/r)=1−(√2) sin θ  s=(√2)r cos θ+r cos φ     =(√2)r cos θ+r(√(1−(1−(√2) sin θ)^2 ))     =(√2)r cos θ+r(√(2 sin θ((√2)−sin θ)))  (ds/dθ)=−(√2)r sin θ+r((cos θ(1−(√2) sin θ))/( (√(sin θ((√2)−sin θ)))))  v=(ds/dt)=−ω(ds/dθ)=ωr[(√2) sin θ−((cos θ(1−(√2) sin θ))/( (√(sin θ((√2)−sin θ)))))]  I_A =((m((√2)r)^2 )/6)+mr^2 =((4mr^2 )/3)  Iα=mgrsin ((π/4)−θ)+N sin φ s−N cos φ r  ((4r)/(3g))α−sin ((π/2)−θ)=(N/(mg))(1−(√2) sin θ)((√2) cos θ)  ⇒(N/(mg))=((((4r)/(3g))α−sin ((π/4)−θ))/( (√2)cos θ (1−(√2) sin θ)))  when N=0:  α=((3g)/(4r)) sin ((π/4)−θ)    (1/2)I_A ω^2 +(1/2)Mv^2 =mgr[1−cos ((π/4)−θ)]  ((4mr^2 )/3)ω^2 +Mω^2 r^2 [(√2) sin θ−((cos θ(1−(√2) sin θ))/( (√(sin θ((√2)−sin θ)))))]^2 =2mgr[1−cos ((π/4)−θ)]  ω^2 {(4/3)+(M/m)[(√2) sin θ−((cos θ(1−(√2) sin θ))/( (√(sin θ((√2)−sin θ)))))]^2 }=((2g)/r)[1−cos ((π/4)−θ)]  ω=(√(g/r))×(√((1−cos ((π/4)−θ))/((1/3)+((2M)/m)[(√2) sin θ−((cos θ(1−(√2) sin θ))/( (√(sin θ((√2)−sin θ)))))]^2 )))  with Φ(θ)=(√((1−cos ((π/4)−θ))/((1/3)+((2M)/m)[(√2) sin θ−((cos θ(1−(√2) sin θ))/( (√(sin θ((√2)−sin θ)))))]^2 )))  ⇒ω=(√(g/r))×Φ(θ)  α=(dω/dt)=−ω(dω/dθ)=−(g/r)Φ(θ)Φ′(θ)  −(g/r)Φ(θ)Φ′(θ)=((3g)/(4r)) sin ((π/4)−θ)  ⇒Φ(θ)Φ′(θ)+(3/4) sin ((π/4)−θ)=0  v=(√(gr))×Φ(θ)[(√2) sin θ−((cos θ(1−(√2) sin θ))/( (√(sin θ((√2)−sin θ)))))]  examples:  (M/m)=1  we get N=0 at θ≈0.5795 (=32.20°)  v_(max) ≈0.082(√(gr))  (M/m)=10  we get N=0 at θ≈0.5373 (=30.79°)  v_(max) ≈0.056(√(gr))

letω=dθdtsinϕ=r2rsinθr=12sinθs=2rcosθ+rcosϕ=2rcosθ+r1(12sinθ)2=2rcosθ+r2sinθ(2sinθ)dsdθ=2rsinθ+rcosθ(12sinθ)sinθ(2sinθ)v=dsdt=ωdsdθ=ωr[2sinθcosθ(12sinθ)sinθ(2sinθ)]IA=m(2r)26+mr2=4mr23Iα=mgrsin(π4θ)+NsinϕsNcosϕr4r3gαsin(π2θ)=Nmg(12sinθ)(2cosθ)Nmg=4r3gαsin(π4θ)2cosθ(12sinθ)whenN=0:α=3g4rsin(π4θ)12IAω2+12Mv2=mgr[1cos(π4θ)]4mr23ω2+Mω2r2[2sinθcosθ(12sinθ)sinθ(2sinθ)]2=2mgr[1cos(π4θ)]ω2{43+Mm[2sinθcosθ(12sinθ)sinθ(2sinθ)]2}=2gr[1cos(π4θ)]ω=gr×1cos(π4θ)13+2Mm[2sinθcosθ(12sinθ)sinθ(2sinθ)]2withΦ(θ)=1cos(π4θ)13+2Mm[2sinθcosθ(12sinθ)sinθ(2sinθ)]2ω=gr×Φ(θ)α=dωdt=ωdωdθ=grΦ(θ)Φ(θ)grΦ(θ)Φ(θ)=3g4rsin(π4θ)Φ(θ)Φ(θ)+34sin(π4θ)=0v=gr×Φ(θ)[2sinθcosθ(12sinθ)sinθ(2sinθ)]examples:Mm=1wegetN=0atθ0.5795(=32.20°)vmax0.082grMm=10wegetN=0atθ0.5373(=30.79°)vmax0.056gr

Commented by ajfour last updated on 12/Apr/21

Ncos φ=MA  mgrsin (π/4−θ)−Nr(√2)sin (θ−φ)  =(((4mr^2 )/3))α  when contact breaks  N=0, A=0,  3gsin (π/4−θ)=4αr    αsin (θ−φ)=ω^2 cos (θ−φ)  3gsin (π/4−θ)sin (θ−φ)=4ω^2 rcos (θ−φ)  .(i)  ωr(√2)sin (θ−φ)=Vcos φ   ...(ii)  (1/2)(((4mr^2 )/3))ω^2 +(1/2)MV^2      =mgr[1−cos (π/4−θ)]     ....(iii)  3g(cos θ−sin θ)sin (θ−φ)=4(√2)ω^2 rcos (θ−φ)  ⇒  ((2/3)+((Msin^2 (θ−φ))/(mcos^2 φ)))[((3(cos θ−sin θ)sin (θ−φ))/(4cos (θ−φ)))]    = (√2)−cos θ−sin θ  with  (√2)sin θ=1−sin φ  θ is obtained from above eq.  Now   V=((ωr(√2)sin (θ−φ))/(cos φ))  ,  hence    V^( 2)  ={((3(cos θ−sin θ)sin^3 (θ−φ))/( 2(√2)cos^2 φcos (θ−φ)))}gr

Ncosϕ=MAmgrsin(π/4θ)Nr2sin(θϕ)=(4mr23)αwhencontactbreaksN=0,A=0,3gsin(π/4θ)=4αrαsin(θϕ)=ω2cos(θϕ)3gsin(π/4θ)sin(θϕ)=4ω2rcos(θϕ).(i)ωr2sin(θϕ)=Vcosϕ...(ii)12(4mr23)ω2+12MV2=mgr[1cos(π/4θ)]....(iii)3g(cosθsinθ)sin(θϕ)=42ω2rcos(θϕ)(23+Msin2(θϕ)mcos2ϕ)[3(cosθsinθ)sin(θϕ)4cos(θϕ)]=2cosθsinθwith2sinθ=1sinϕθisobtainedfromaboveeq.NowV=ωr2sin(θϕ)cosϕ,henceV2={3(cosθsinθ)sin3(θϕ)22cos2ϕcos(θϕ)}gr

Commented by mr W last updated on 12/Apr/21

thanks for reviewing sir!

thanksforreviewingsir!

Commented by ajfour last updated on 12/Apr/21

Commented by mr W last updated on 12/Apr/21

Commented by mr W last updated on 12/Apr/21

case 2:  v_(x, C_1 ) =v_(x, C_2 ) =V  case 1:  v_(x, C_1 ) ≠v_(x, C_2 ) =V

case2:vx,C1=vx,C2=Vcase1:vx,C1vx,C2=V

Commented by mr W last updated on 12/Apr/21

the corner C_1  doesn′t have the same  v_x  as the point C_2  on the cylinder!  both points on the contact must have  the same velocity in x′−direction,  not in x−direction, i think.

thecornerC1doesnthavethesamevxasthepointC2onthecylinder!bothpointsonthecontactmusthavethesamevelocityinxdirection,notinxdirection,ithink.

Commented by mr W last updated on 12/Apr/21

Commented by mr W last updated on 12/Apr/21

V_(C2) cos φ=V_(C1) sin (θ−φ)  ⇒Vcos φ=ω(√2)rsin (θ−φ)  ⇒V=((ωr(√2)sin (θ−φ))/(cos φ))  sin φ=1−(√2) sin θ  cos φ=(√(2sin θ((√2) −sin θ)))  sin (θ−φ)=sin θcos φ−cos θsin φ  V=ωr(√2)(sin θ−((cos θ(1−(√2) sin θ))/( (√(2 sin θ ((√2)−sin θ))))))  V=ωr((√2)sin θ−((cos θ(1−(√2) sin θ))/( (√(sin θ ((√2)−sin θ))))))  this is the same as i had above.

VC2cosϕ=VC1sin(θϕ)Vcosϕ=ω2rsin(θϕ)V=ωr2sin(θϕ)cosϕsinϕ=12sinθcosϕ=2sinθ(2sinθ)sin(θϕ)=sinθcosϕcosθsinϕV=ωr2(sinθcosθ(12sinθ)2sinθ(2sinθ))V=ωr(2sinθcosθ(12sinθ)sinθ(2sinθ))thisisthesameasihadabove.

Commented by ajfour last updated on 12/Apr/21

Yes sir, you are right; I ′ve edited.

Yessir,youareright;Iveedited.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com