All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 138024 by Algoritm last updated on 09/Apr/21
Answered by TheSupreme last updated on 09/Apr/21
ex=udx=1udu∫u2+4u−1duu(u+2)=z∫z2−5z−2dzz2−5=w2dz=ww2+5dw∫w2w2+5dw=w[w2+5]−∫w2+5dwww2+5−12(w2+5w+5sinh−1(w5))+cz2−52z+5sinh−1(z2−55)+cu2+4u−12(u+2)+5sinh−1(u2+4u−15)+ce2x+4ex−12(ex+2)+5sinh−1(e2x+4ex−15)+c
Answered by MJS_new last updated on 09/Apr/21
∫e2x+4ex−1dx=(ex+2)2−5dx=[t=ex+2+e2x+4ex−15→dx=5(e2x+4ex−1)ex+2+e2x+4ex−1]=52∫(t2−1)2t2(5t2−4t+5)dt==∫(52t2+2t+52−25t2−4t+5)dt==−52t+2lnt+5t2−2arctan(5t−2)==e2x+4ex−1+2ln(ex+2+e2x+4ex−1)−2arctan(ex+e2x+4ex−1)+C
Answered by Mathspace last updated on 09/Apr/21
I=∫e2x+4ex−1dxI=ex=t∫t2+4t−1dtt=∫t2+4t+4−5tdt=∫(t+2)2−5tdt=t+2=5ch(u)∫5shu(5chu−2)5chudu=5∫sh2u5chu−2du=5∫ch(2u)−125chu−2du=52∫ch(2u)5chu−2du=54∫e2u−e−2u5eu+e−u2−2du=52∫e2u−e−2u5eu+5e−u−4du=eu=y52∫y2−y−25y+5y−1−4dyy=52∫y2−y−25y2+5−4ydy=52∫y4−1y2(5y2−4y+5)dyletdecomposeF(y)=y4−1y2(5y2−4y+5)F(y)=15+ay+by2+cy+d5y2−4y+5...becpntinued...=
Terms of Service
Privacy Policy
Contact: info@tinkutara.com