Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 138026 by mnjuly1970 last updated on 09/Apr/21

             .........nice  ... ... ... calculus...........             Θ= Σ_ ^(n=1)  ^∞ ((n^2 /(n!.4^n ))) =??

$$\:\:\:\:\:\:\:\:\:\:\:\:\:.........{nice}\:\:...\:...\:...\:{calculus}........... \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\Theta=\:\underset{\overset{{n}=\mathrm{1}} {\:}} {\overset{\infty} {\sum}}\left(\frac{{n}^{\mathrm{2}} }{{n}!.\mathrm{4}^{{n}} }\right)\:=?? \\ $$

Answered by Dwaipayan Shikari last updated on 09/Apr/21

Σ_(n=1) ^∞ (x^n /(n!))=e^x −1  Σ_(n=1) ^∞ ((nx^n )/(n!))=xe^x ⇒Σ_(n=1) ^∞ ((n^2 x^n )/(n!))=x^2 e^x +xe^x   x=(1/4)⇒ Σ_(n=1) ^∞ (n^2 /(n!4^n ))=(5/(16))e^(1/4)

$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{x}^{{n}} }{{n}!}={e}^{{x}} −\mathrm{1} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{nx}^{{n}} }{{n}!}={xe}^{{x}} \Rightarrow\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{n}^{\mathrm{2}} {x}^{{n}} }{{n}!}={x}^{\mathrm{2}} {e}^{{x}} +{xe}^{{x}} \\ $$$${x}=\frac{\mathrm{1}}{\mathrm{4}}\Rightarrow\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{n}^{\mathrm{2}} }{{n}!\mathrm{4}^{{n}} }=\frac{\mathrm{5}}{\mathrm{16}}{e}^{\mathrm{1}/\mathrm{4}} \\ $$

Commented by mnjuly1970 last updated on 09/Apr/21

   thanks alot ....

$$\:\:\:{thanks}\:{alot}\:.... \\ $$

Answered by mathmax by abdo last updated on 09/Apr/21

let f(x)=Σ_(n=1) ^∞  (x^n /(n!))  =e^x  ⇒f^′ (x)=Σ_(n=1) ^∞  ((nx^(n−1) )/(n!))   ⇒xf^′ (x)=Σ_(n=1) ^∞  ((nx^n )/(n!)) ⇒(xf^′ (x))^′  =Σ((n^2 x^(n−1) )/(n!)) ⇒  x(f^′ (x)+xf^((2)) (x))=Σ ((n^2 x^n )/(n!)) ⇒x(e^x  +xe^x ) =Σ(...) ⇒  Σ  ((n^2 x^n )/(n!))=(x^2  +x)e^x     x=(1/4) ⇒Σ_(n=1) ^∞  (n^2 /(n!4^n )) =((1/4^2 )+(1/4))e^(1/4)   =(5/(16))e^(1/4)

$$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)=\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{x}^{\mathrm{n}} }{\mathrm{n}!}\:\:=\mathrm{e}^{\mathrm{x}} \:\Rightarrow\mathrm{f}^{'} \left(\mathrm{x}\right)=\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{nx}^{\mathrm{n}−\mathrm{1}} }{\mathrm{n}!}\: \\ $$$$\Rightarrow\mathrm{xf}^{'} \left(\mathrm{x}\right)=\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{nx}^{\mathrm{n}} }{\mathrm{n}!}\:\Rightarrow\left(\mathrm{xf}^{'} \left(\mathrm{x}\right)\right)^{'} \:=\Sigma\frac{\mathrm{n}^{\mathrm{2}} \mathrm{x}^{\mathrm{n}−\mathrm{1}} }{\mathrm{n}!}\:\Rightarrow \\ $$$$\mathrm{x}\left(\mathrm{f}^{'} \left(\mathrm{x}\right)+\mathrm{xf}^{\left(\mathrm{2}\right)} \left(\mathrm{x}\right)\right)=\Sigma\:\frac{\mathrm{n}^{\mathrm{2}} \mathrm{x}^{\mathrm{n}} }{\mathrm{n}!}\:\Rightarrow\mathrm{x}\left(\mathrm{e}^{\mathrm{x}} \:+\mathrm{xe}^{\mathrm{x}} \right)\:=\Sigma\left(...\right)\:\Rightarrow \\ $$$$\Sigma\:\:\frac{\mathrm{n}^{\mathrm{2}} \mathrm{x}^{\mathrm{n}} }{\mathrm{n}!}=\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{x}\right)\mathrm{e}^{\mathrm{x}} \:\:\:\:\mathrm{x}=\frac{\mathrm{1}}{\mathrm{4}}\:\Rightarrow\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{n}^{\mathrm{2}} }{\mathrm{n}!\mathrm{4}^{\mathrm{n}} }\:=\left(\frac{\mathrm{1}}{\mathrm{4}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{4}}\right)\mathrm{e}^{\frac{\mathrm{1}}{\mathrm{4}}} \\ $$$$=\frac{\mathrm{5}}{\mathrm{16}}\mathrm{e}^{\frac{\mathrm{1}}{\mathrm{4}}} \\ $$

Commented by mnjuly1970 last updated on 09/Apr/21

grateful sir

$${grateful}\:{sir} \\ $$

Answered by Ñï= last updated on 09/Apr/21

Σ_(n=1) ^∞ (n^2 /(n!4^n ))=(1/4)Σ_(n=0) ^∞ ((n+1)/(n!4^n ))=(1/4)(xD+1)e^x ∣_(x=(1/4))   =(1/4)(x+1)e^x ∣_(x=(1/4)) =(5/(16))e^(1/4)

$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{n}^{\mathrm{2}} }{{n}!\mathrm{4}^{{n}} }=\frac{\mathrm{1}}{\mathrm{4}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{n}+\mathrm{1}}{{n}!\mathrm{4}^{{n}} }=\frac{\mathrm{1}}{\mathrm{4}}\left({xD}+\mathrm{1}\right){e}^{{x}} \mid_{{x}=\frac{\mathrm{1}}{\mathrm{4}}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\left({x}+\mathrm{1}\right){e}^{{x}} \mid_{{x}=\frac{\mathrm{1}}{\mathrm{4}}} =\frac{\mathrm{5}}{\mathrm{16}}{e}^{\mathrm{1}/\mathrm{4}} \\ $$

Commented by mnjuly1970 last updated on 09/Apr/21

 tvhanks alot..

$$\:{tvhanks}\:{alot}.. \\ $$

Answered by mnjuly1970 last updated on 09/Apr/21

Terms of Service

Privacy Policy

Contact: info@tinkutara.com