All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 138041 by mnjuly1970 last updated on 09/Apr/21
.......advanced.........calculus......provethat:::ϕ=∫01ψ(x).sin(2πx)dx=−π2...✓
Answered by Dwaipayan Shikari last updated on 09/Apr/21
∫01ψ(x)sin(2πx)dx=[sin(2πx)log(Γ(x))]01−2π∫01log(Γ(x))cos(2πx)=−π∫01log(π)cos(2πx)+π∫01log(sin(πx))cos(2πx)dx=∫0πlog(sin(u))cos(2u)du=[12log(sin(u))sin(2u)]0π−12∫0πsin(2u)cos(u)sin(u)du=−12∫0π1+cos(2u)du=−π2
Commented by mnjuly1970 last updated on 09/Apr/21
verynicemrpayan..thankyousomuch..
Answered by mnjuly1970 last updated on 09/Apr/21
ϕ=∫01ψ(x).sin(2πx)dxϕ=−∫01ψ(1−x).sin(2πx)dx2ϕ=∫01{(ψ(x)−ψ(1−x)}sin(2πx)dx=−π∫01cot(πx).sin(2πx)dx=−2π∫01cos(πx)sin(πx){sin(πx).cos(πx)}dx∴ϕ=−π∫011+cos(2πx)2dx=−π2.....✓
Terms of Service
Privacy Policy
Contact: info@tinkutara.com