All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 138065 by mnjuly1970 last updated on 09/Apr/21
...nice.........calculus...prove::Ω=∑∞n=1ζ(2n+1)−1n+1=−γ+log(2)
Answered by Ñï= last updated on 09/Apr/21
Ω=∑∞k=2∑∞n=11(n+1)k2n+1=−∑∞k=2(1k+ln(1−1k2))=limm→∞(−Hm+1−∑∞k=2(kln(k+1)+kln(k−1)−2klnk))=limm→∞(−Hm+1+ln2+lnm−mln(1+1m))=limm→∞(−Hm+lnm+ln2+O(1m))=−γ+ln2......idontunderstand...justcopy...
Commented by mnjuly1970 last updated on 10/Apr/21
Terms of Service
Privacy Policy
Contact: info@tinkutara.com