All Questions Topic List
Differentiation Questions
Previous in All Question Next in All Question
Previous in Differentiation Next in Differentiation
Question Number 138085 by liberty last updated on 10/Apr/21
Givenacurvey=1x2+1.Findtheequationoftangentlinewithhaveslopeoftangentminimum.
Answered by EDWIN88 last updated on 10/Apr/21
lettheeqoftangentlineisy=px+qwherep=minimumvalueofy′step(1)y=(x2+1)−1;y′=−2x(x2+1)−2wewantp(x)=−2x(x2+1)2minimump′(x)=−2(x2+1)2−(−2x)(4x)(x2+1)(x2+1)4p′(x)=−2(x2+1)+8x2(x2+1)3=0;p′(x)=6x2−2(x2+1)3⇒6x2=2;x2=13orx=±33chekp″(x)=12x(x2+1)3−6x(6x2−2)(x2+1)2(x2+1)6p″(x)=24x(1−x2)(x2+1)4>0whenx=13sominimumofp(x)whenx=13thenp=−2(13)169=−233×916=−338(2)contactpointoftangent(13,34)thuseqoftangentlinehavetheminimumslopeofcurvey=1x2+1is33x+8y=33(13)+8(34)33x+8y=9
Commented by EDWIN88 last updated on 10/Apr/21
Terms of Service
Privacy Policy
Contact: info@tinkutara.com