All Questions Topic List
Differentiation Questions
Previous in All Question Next in All Question
Previous in Differentiation Next in Differentiation
Question Number 138112 by 676597498 last updated on 10/Apr/21
provethat∫0π2(sin2k(x)dx)=(2k)!2−2k−1(k!)2
Answered by Dwaipayan Shikari last updated on 10/Apr/21
∫0π2sin2a−1xcos2b−1xdx=Γ(a)Γ(b)2Γ(a+b)Matchingthis∫0π2sin2k(x)dx=∫0π2sin2(k+1)−1xcos2(12)−1x=Γ(k+1)Γ(12)Γ(k+32)
Answered by mathmax by abdo last updated on 10/Apr/21
letIn=∫0π2sinnxdx⇒In=∫0π2sinn−2x(1−cos2x)dx=∫0π2sinn−2xdx−∫0π2cos2xsinn−2xdxwe[have∫0π2sinn−2xdx=In−2andbyrecurrence∫0π2cosx(cosxsinn−2x)dx=[sinn−1xn−1cosx]0π2+∫0π2sinxsinn−1xn−1dx=1n−1In⇒In=In−2−1n−1In⇒(1+1n−1)In=In−2⇒nn−1In=In−2⇒In=n−1nIn−2⇒I2n=2n−12nI2n−2(n⩾1)⇒∏k=1nI2k=∏k=1n2k−12kI2k−2⇒I2.I4......I2n=∏k=1n(2k−1)2nn!I0.I2.....I2n−2⇒I2n=1.3.5....(2n−1)2n.n!I0=π21.2.3.4.5.....(2n−1)(2n)2nn!.2n.n!=π2×(2n)!22n(n!)2⇒∫0π2sin2nxdx=π(2n)!22n+1(n!)2
Terms of Service
Privacy Policy
Contact: info@tinkutara.com