Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 138112 by 676597498 last updated on 10/Apr/21

prove that  ∫_0 ^( (π/2)) (sin^(2k) (x)dx)=(((2k)!2^(−2k−1) )/((k!)^2 ))

provethat0π2(sin2k(x)dx)=(2k)!22k1(k!)2

Answered by Dwaipayan Shikari last updated on 10/Apr/21

∫_0 ^(π/2) sin^(2a−1) x cos^(2b−1) x dx=((Γ(a)Γ(b))/(2Γ(a+b)))  Matching this  ∫_0 ^(π/2) sin^(2k) (x)dx=∫_0 ^(π/2) sin^(2(k+1)−1) x cos^(2((1/2))−1) x=((Γ(k+1)Γ((1/2)))/(Γ(k+(3/2))))

0π2sin2a1xcos2b1xdx=Γ(a)Γ(b)2Γ(a+b)Matchingthis0π2sin2k(x)dx=0π2sin2(k+1)1xcos2(12)1x=Γ(k+1)Γ(12)Γ(k+32)

Answered by mathmax by abdo last updated on 10/Apr/21

let  I_n =∫_0 ^(π/2)  sin^n xdx ⇒I_n =∫_0 ^(π/2)  sin^(n−2) x (1−cos^2 x)dx  =∫_0 ^(π/2)  sin^(n−2) xdx−∫_0 ^(π/2)  cos^2 x sin^(n−2) xdx  we[have  ∫_0 ^(π/2)  sin^(n−2) xdx=I_(n−2)   and by recurrence  ∫_0 ^(π/2) cosx (cosx sin^(n−2) x)dx =[((sin^(n−1) x)/(n−1))cosx]_0 ^(π/2) +∫_0 ^(π/2) sinx ((sin^(n−1) x)/(n−1))dx  =(1/(n−1))I_n  ⇒I_n =I_(n−2) −(1/(n−1))I_n  ⇒(1+(1/(n−1)))I_n =I_(n−2)  ⇒  (n/(n−1))I_n =I_(n−2)  ⇒I_n =((n−1)/n) I_(n−2)  ⇒ I_(2n) =((2n−1)/(2n))I_(2n−2)     (n≥1)  ⇒Π_(k=1) ^(n )  I_(2k) =Π_(k=1) ^n  ((2k−1)/(2k)) I_(2k−2)  ⇒  I_2 .I_4 ......I_(2n) =((Π_(k=1) ^n  (2k−1))/(2^n  n!)) I_0 .I_2 .....I_(2n−2)  ⇒  I_(2n) =((1.3.5....(2n−1))/(2^n .n!)) I_0 =(π/2) ((1.2.3.4.5.....(2n−1)(2n))/(2^n n! .2^(n .) n!))  =(π/2)×(((2n)!)/(2^(2n) (n!)^2 )) ⇒∫_0 ^(π/2)  sin^(2n) xdx =((π(2n)!)/(2^(2n+1) (n!)^2 ))

letIn=0π2sinnxdxIn=0π2sinn2x(1cos2x)dx=0π2sinn2xdx0π2cos2xsinn2xdxwe[have0π2sinn2xdx=In2andbyrecurrence0π2cosx(cosxsinn2x)dx=[sinn1xn1cosx]0π2+0π2sinxsinn1xn1dx=1n1InIn=In21n1In(1+1n1)In=In2nn1In=In2In=n1nIn2I2n=2n12nI2n2(n1)k=1nI2k=k=1n2k12kI2k2I2.I4......I2n=k=1n(2k1)2nn!I0.I2.....I2n2I2n=1.3.5....(2n1)2n.n!I0=π21.2.3.4.5.....(2n1)(2n)2nn!.2n.n!=π2×(2n)!22n(n!)20π2sin2nxdx=π(2n)!22n+1(n!)2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com