Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 138145 by mnjuly1970 last updated on 10/Apr/21

                   ...........advanced ... ... ... calculus.........        find the value of::                  Θ=Σ_(n=1) ^∞ (((−1)^n H_(2n) )/n)=???

...........advanced.........calculus.........findthevalueof::Θ=n=1(1)nH2nn=???

Answered by Dwaipayan Shikari last updated on 10/Apr/21

Σ_(n=1) ^∞ H_(2n) x^(2n) =H_2 x^2 +H_4 x^4 +H_6 x^6 +H_8 x^8 +...=ψ(x^2 )  And Σ_(n=1) ^∞ (((−1)^n H_(2n) )/n)=∫_0 ^1 ((ψ(−x))/( (√x)))dx  Σ_(n=1) ^∞ H_n x^n =H_1 x+H_2 x^2 +H_3 x^3 +...=−((log(1−x))/(1−x))  Σ_(n=1) ^∞ (−1)^n H_n x^n =−H_1 x+H_2 x^2 −H_3 x^3 +...=−((log(1+x))/(1+x))  ψ(x^2 )=−(1/2)(((log(1−x))/(1−x))+((log(1+x))/(1+x)))  ψ(x)=−(1/2)(((log(1−(√x)))/(1−(√x)))+((log(1+(√x)))/(1+(√x))))  ∫_0 ^1 ((ψ(−x))/( (√x)))=−(1/2)∫_0 ^1 (1/( i(√x)))(((log(1−i(√x)))/(1−i(√x)))+((log(1+i(√x)))/(1+i(√x))))dx        x=t^2   =−(1/(2i))∫_0 ^1 ((log(1−it))/(1−it))+((log(1+it))/(1+it))dt  =−(1/(2i))∫_0 ^1 ((log(1+t^2 ))/(1+t^2 ))+itlog(((1−it)/(1+it)))dt  ....

n=1H2nx2n=H2x2+H4x4+H6x6+H8x8+...=ψ(x2)Andn=1(1)nH2nn=01ψ(x)xdxn=1Hnxn=H1x+H2x2+H3x3+...=log(1x)1xn=1(1)nHnxn=H1x+H2x2H3x3+...=log(1+x)1+xψ(x2)=12(log(1x)1x+log(1+x)1+x)ψ(x)=12(log(1x)1x+log(1+x)1+x)01ψ(x)x=12011ix(log(1ix)1ix+log(1+ix)1+ix)dxx=t2=12i01log(1it)1it+log(1+it)1+itdt=12i01log(1+t2)1+t2+itlog(1it1+it)dt....

Commented by mnjuly1970 last updated on 10/Apr/21

grateful  for your attention    and  effort...

gratefulforyourattentionandeffort...

Answered by Ñï= last updated on 10/Apr/21

Σ_(n=1) ^∞ (((−1)^n )/n)H_(2n) =−∫_0 ^1 (1/(1−u))Σ_(n=1) ^∞ (((−1)^(n−1) )/n)x^n (1−u^(2n) )du         x=1  =∫_0 ^1 (1/(u−1))Σ_(n=1) ^∞ (((−1)^(n−1) )/n)[x^n −(xu^2 )^n ]du  =∫_0 ^1 (1/(u−1))[ln(1+x)−ln(1+xu^2 )]du  =.....???

n=1(1)nnH2n=0111un=1(1)n1nxn(1u2n)dux=1=011u1n=1(1)n1n[xn(xu2)n]du=011u1[ln(1+x)ln(1+xu2)]du=.....???

Commented by mnjuly1970 last updated on 10/Apr/21

      thanks alot mr...

thanksalotmr...

Answered by mnjuly1970 last updated on 10/Apr/21

      f(x):=Σ_(n=1 ) ^∞ (H_n /n) x^n =(1/2)ln^2 (1−x)+li_2 (x)        f (i):=Σ(H_n /n)(i)^n =(1/2)ln^2 (1−i)+li_2 (i)....(∗)          f(−i):=Σ_(n=1) ^∞ (H_n /n)(−i)^n =(1/2)ln^2 (1+i)+li_2 (−i)....(∗∗)       (∗)+(∗∗) : Σ(H_n /n)(i^n +(−i)^n )=(1/2){ln^2 ((√2) e^((−iπ)/4) )+ln^2 ((√2) e^((iπ)/4) )}+(1/2)li_2 (i^2 )             ∴ Σ_(n=1) ^∞ (H_(2n) /(2n))((−1)^n +(−1)^n )=(1/2){(ln((√2) )−((iπ)/4))^2 +(ln((√(2  )) ) +((iπ)/4))^2 }−(π^2 /(24))            =(1/2){2((1/4)ln^2 (2)−(π^2 /(16)))}−(π^2 /(24))    ∴      Θ =(1/4)ln^2 (2)−((5π^2 )/(48)) ...✓✓

f(x):=n=1Hnnxn=12ln2(1x)+li2(x)f(i):=ΣHnn(i)n=12ln2(1i)+li2(i)....()f(i):=n=1Hnn(i)n=12ln2(1+i)+li2(i)....()()+():ΣHnn(in+(i)n)=12{ln2(2eiπ4)+ln2(2eiπ4)}+12li2(i2)n=1H2n2n((1)n+(1)n)=12{(ln(2)iπ4)2+(ln(2)+iπ4)2}π224=12{2(14ln2(2)π216)}π224Θ=14ln2(2)5π248...

Answered by Kamel last updated on 10/Apr/21

Commented by Kamel last updated on 10/Apr/21

Without complex numbers.

Withoutcomplexnumbers.

Commented by mnjuly1970 last updated on 10/Apr/21

thanks alot..

thanksalot..

Terms of Service

Privacy Policy

Contact: info@tinkutara.com