Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 138295 by greg_ed last updated on 12/Apr/21

hi !  Simplify : for n ∈ N^∗ ,  S_n  = Σ_(k=1) ^n   ((3k+8)/(k(k+2)2^k )) .

hi!Simplify:fornN,Sn=nk=13k+8k(k+2)2k.

Answered by mr W last updated on 12/Apr/21

((3k+8)/(k(k+2)))=(A/k)+(B/(k+2))=(((A+B)k+2A)/(k(k+2)))  ⇒2A=8⇒A=4  ⇒A+B=3 ⇒B=−1  S_n  = Σ_(k=1) ^n   ((3k+8)/(k(k+2)2^k ))       = Σ_(k=1) ^n ((4/k)−(1/(k+2)))(1/2^k )        = 4Σ_(k=1) ^n   (1/(k2^k ))−Σ_(k=1) ^n   (1/((k+2)2^k ))       = 4Σ_(k=1) ^n   (1/(k2^k ))−4Σ_(k=1) ^n   (1/((k+2)2^(k+2) ))       = 4Σ_(k=1) ^n   (1/(k2^k ))−4Σ_(k=3) ^(n+2)   (1/(k2^k ))       = 4Σ_(k=1) ^n   (1/(k2^k ))−4Σ_(k=1) ^n   (1/(k2^k ))+4((1/(1×2^1 ))+(1/(2×2^2 ))−(1/((n+1)2^(n+1) ))−(1/((n+2)2^(n+2) )))       = (5/2)−((3n+5)/((n+1)(n+2)2^n ))

3k+8k(k+2)=Ak+Bk+2=(A+B)k+2Ak(k+2)2A=8A=4A+B=3B=1Sn=nk=13k+8k(k+2)2k=nk=1(4k1k+2)12k=4nk=11k2knk=11(k+2)2k=4nk=11k2k4nk=11(k+2)2k+2=4nk=11k2k4n+2k=31k2k=4nk=11k2k4nk=11k2k+4(11×21+12×221(n+1)2n+11(n+2)2n+2)=523n+5(n+1)(n+2)2n

Commented by henderson last updated on 12/Apr/21

thank u, sir mr W !

thanku,sirmrW!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com