All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 138315 by LUFFY last updated on 12/Apr/21
∫−∞+∞cosx(x2+1)dxdon′tusefeynmanntrick
Answered by Ñï= last updated on 12/Apr/21
I(t)=∫−∞+∞cos(tx)x2+1dxI(t)′=−∫−∞+∞xsin(tx)x2+1dx=−∫−∞+∞(x2+1−1)sin(tx)x(x2+1)dx=−∫−∞+∞sin(tx)x−sin(tx)x(x2+1)dx=−π+∫−∞+∞sin(tx)x(x2+1)dxI(t)″=∫−∞+∞cos(tx)x2+1dx=I(t)I(t)″−I(t)=0⇒I(t)=C1ex+C2e−xI(t)′=C1ex−C2e−x{I(0)=πI(0)′=−π⇒C1=0C2=π⇒I(t)=πe−x⇒∫−∞+∞cosxx2+1dx=I(1)=πe
I=∫−∞+∞cosxx2+1dx=ℜ∫−∞+∞eixx2+1dx=ℜ[2πiRes(eixx2+1,i)]=ℜ[2πilimx→ix−ix2+1eix]=ℜ[2πi⋅e−12i]=πe
I(t)=∫0+∞cos(tx)x2+1dxL[I(t)]=∫0∞dx∫0+∞cos(tx)x2+1e−stdt=∫0∞L[cos(tx)(s)]x2+1dx=∫0∞ss2+x2⋅dxx2+1=ss2−1[∫0∞dxx2+1dx−∫0∞sdxx2+s2]=πs2(s2−1)−π2(s2−1)I(t)=L−1[πs2(s2−1)−π2(s2−1)]=π2L−1{ss2−1}−π2L−1{1s2−1}=π2(cosht−sinht)=π2e−t⇒∫−∞+∞cosxx2+1dx=2I(1)=πe
Terms of Service
Privacy Policy
Contact: info@tinkutara.com