Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 138315 by LUFFY last updated on 12/Apr/21

∫_(−∞) ^( +∞) ((cosx)/((x^2 +1)))dx  don′t use feynmann trick

+cosx(x2+1)dxdontusefeynmanntrick

Answered by Ñï= last updated on 12/Apr/21

I(t)=∫_(−∞) ^(+∞) ((cos (tx))/(x^2 +1))dx  I(t)′=−∫_(−∞) ^(+∞) ((xsin (tx))/(x^2 +1))dx=−∫_(−∞) ^(+∞) (((x^2 +1−1)sin (tx))/(x(x^2 +1)))dx  =−∫_(−∞) ^(+∞) ((sin (tx))/x)−((sin (tx))/(x(x^2 +1)))dx=−π+∫_(−∞) ^(+∞) ((sin (tx))/(x(x^2 +1)))dx  I(t)′′=∫_(−∞) ^(+∞) ((cos (tx))/(x^2 +1))dx=I(t)  I(t)′′−I(t)=0  ⇒    I(t)=C_1 e^x +C_2 e^(−x)            I(t)′=C_1 e^x −C_2 e^(−x)    { ((I(0)=π)),((I(0)′=−π)) :}  ⇒C_1 =0      C_2 =π  ⇒I(t)=πe^(−x)   ⇒∫_(−∞) ^(+∞) ((cos x)/(x^2 +1))dx=I(1)=(π/e)

I(t)=+cos(tx)x2+1dxI(t)=+xsin(tx)x2+1dx=+(x2+11)sin(tx)x(x2+1)dx=+sin(tx)xsin(tx)x(x2+1)dx=π++sin(tx)x(x2+1)dxI(t)=+cos(tx)x2+1dx=I(t)I(t)I(t)=0I(t)=C1ex+C2exI(t)=C1exC2ex{I(0)=πI(0)=πC1=0C2=πI(t)=πex+cosxx2+1dx=I(1)=πe

Answered by Ñï= last updated on 12/Apr/21

I=∫_(−∞) ^(+∞) ((cos x)/(x^2 +1))dx=ℜ∫_(−∞) ^(+∞) (e^(ix) /(x^2 +1))dx=ℜ[2πiRes((e^(ix) /(x^2 +1)),i)]  =ℜ[2πilim_(x→i) ((x−i)/(x^2 +1))e^(ix) ]=ℜ[2πi∙(e^(−1) /(2i))]=(π/e)

I=+cosxx2+1dx=+eixx2+1dx=[2πiRes(eixx2+1,i)]=[2πilimxixix2+1eix]=[2πie12i]=πe

Answered by Ñï= last updated on 12/Apr/21

I(t)=∫_0 ^(+∞) ((cos (tx))/(x^2 +1))dx  L[I(t)]=∫_0 ^∞ dx∫_0 ^(+∞) ((cos (tx))/(x^2 +1))e^(−st) dt  =∫_0 ^∞ ((L[cos (tx)(s)])/(x^2 +1))dx  =∫_0 ^∞ (s/(s^2 +x^2 ))∙(dx/(x^2 +1))  =(s/(s^2 −1))[∫_0 ^∞ (dx/(x^2 +1))dx−∫_0 ^∞ ((sdx)/(x^2 +s^2 ))]  =((πs)/(2(s^2 −1)))−(π/(2(s^2 −1)))  I(t)=L^(−1) [((πs)/(2(s^2 −1)))−(π/(2(s^2 −1)))]  =(π/2)L^(−1) {(s/(s^2 −1))}−(π/2)L^(−1) {(1/(s^2 −1))}  =(π/2)(cosh t−sinh t)  =(π/2)e^(−t)   ⇒∫_(−∞) ^(+∞) ((cos x)/(x^2 +1))dx=2I(1)=(π/e)

I(t)=0+cos(tx)x2+1dxL[I(t)]=0dx0+cos(tx)x2+1estdt=0L[cos(tx)(s)]x2+1dx=0ss2+x2dxx2+1=ss21[0dxx2+1dx0sdxx2+s2]=πs2(s21)π2(s21)I(t)=L1[πs2(s21)π2(s21)]=π2L1{ss21}π2L1{1s21}=π2(coshtsinht)=π2et+cosxx2+1dx=2I(1)=πe

Terms of Service

Privacy Policy

Contact: info@tinkutara.com