Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 138336 by mr W last updated on 12/Apr/21

Commented by mr W last updated on 12/Apr/21

uniform rod with length L (>s) and   mass m, cube with side length s and   mass M. one end of the rod is hinged.   no friction.  motion beginns at θ=90° from rest.  find the maximal velocity of the   cube.

uniformrodwithlengthL(>s)andmassm,cubewithsidelengthsandmassM.oneendoftherodishinged.nofriction.motionbeginnsatθ=90°fromrest.findthemaximalvelocityofthecube.

Answered by mr W last updated on 14/Apr/21

Commented by mr W last updated on 15/Apr/21

ω=−(dθ/dt)  I=((mL^2 )/3)  v=ωLsin θ  (1/2)(((mL^2 )/3))ω^2 +(1/2)M(ωLsin θ)^2 =mg(1−sin θ)(L/2)  ω^2 (1+((3M sin^2  θ)/m))=((3g)/L)(1−sin θ)  λ=((3M)/m)  ω=(√((3g)/L))(√((1−sin θ)/(1+λsin^2  θ)))=(√((3g)/L))Φ(θ)  Φ(θ)=(√((1−sin θ)/(1+λsin^2  θ)))  α=(dω/dt)=(dθ/dt)×(dω/dθ)=−ω(dω/dθ)=−((3g)/L)Φ(θ)Φ′(θ)  (((mL^2 )/3))α=mg(L/2)cos θ−NLsin θ  N=((mg)/(sin θ))(((cos θ)/2)+Φ(θ)Φ′(θ))  N=0  ⇒Φ(θ)Φ′(θ)+((cos θ)/2)=0   ∗)  v=(√(3gL)) Φ(θ)sin θ    ∗) can be formed to:  (2/3)−sin θ−(M/m)sin^3  θ=0  or with μ=(m/M)  sin^3  θ+μsin θ−((2μ)/3)=0  ⇒sin θ=((μ/3))^(1/3) ((((√(1+(μ/3)))+1))^(1/3) −(((√(1+(μ/3)))−1))^(1/3) )    example:  (M/m)=1  N=0 at θ≈0.5508 (31.558°)  v_(max) ≈0.4637(√(gL))

ω=dθdtI=mL23v=ωLsinθ12(mL23)ω2+12M(ωLsinθ)2=mg(1sinθ)L2ω2(1+3Msin2θm)=3gL(1sinθ)λ=3Mmω=3gL1sinθ1+λsin2θ=3gLΦ(θ)Φ(θ)=1sinθ1+λsin2θα=dωdt=dθdt×dωdθ=ωdωdθ=3gLΦ(θ)Φ(θ)(mL23)α=mgL2cosθNLsinθN=mgsinθ(cosθ2+Φ(θ)Φ(θ))N=0Φ(θ)Φ(θ)+cosθ2=0)v=3gLΦ(θ)sinθ)canbeformedto:23sinθMmsin3θ=0orwithμ=mMsin3θ+μsinθ2μ3=0sinθ=μ33(1+μ3+131+μ313)example:Mm=1N=0atθ0.5508(31.558°)vmax0.4637gL

Commented by ajfour last updated on 15/Apr/21

ω^2 Lcos θ=αLsin θ  ((mgLcos θ)/2)=((mL^2 α)/3)  ((mgL)/2)(1−sin θ)=((mL^2 ω^2 )/6)+((Mv^2 )/2)  ⇒   ((3g)/2)=((ω^2 L)/(sin θ))  &   ωLsin θ=v  ⇒ gL(1−sin θ)=((gLsin θ)/2)                                         +((3MgLsin^3 θ)/(2m))  2(1−sin θ)=sin θ+3((M/m))sin^3 θ  θ is obtained from this eq.  Now   v=(√((3gLsin^3 θ)/2))      _____________________

ω2Lcosθ=αLsinθmgLcosθ2=mL2α3mgL2(1sinθ)=mL2ω26+Mv223g2=ω2Lsinθ&ωLsinθ=vgL(1sinθ)=gLsinθ2+3MgLsin3θ2m2(1sinθ)=sinθ+3(Mm)sin3θθisobtainedfromthiseq.Nowv=3gLsin3θ2_____________________

Commented by ajfour last updated on 15/Apr/21

yes sir, thanks; corrected.

yessir,thanks;corrected.

Commented by mr W last updated on 15/Apr/21

nice solution sir!

nicesolutionsir!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com