All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 138598 by qaz last updated on 15/Apr/21
∑∞n=0(−1)nn!(2n+3)(4π)n=?
Answered by mr W last updated on 15/Apr/21
ex=∑∞n=0xnn!e−x2=∑∞n=0(−1)nx2nn!x2e−x2=∑∞n=0(−1)nx2n+2n!∫0xx2e−x2dx=∑∞n=0(−1)nn!∫0xx2n+2dxπerf(x)−2xe−x24=∑∞n=0(−1)nx2n+3n!(2n+3)πerf(x)−2xe−x24x3=∑∞n=0(−1)nx2nn!(2n+3)letx=2π∑∞n=0(−1)nn!(2n+3)(4π)n=πerf(2π)−4πe−4π4×4π×2π=π2erf(2π)−4πe−4π32
Terms of Service
Privacy Policy
Contact: info@tinkutara.com