All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 138656 by ajfour last updated on 16/Apr/21
I=∫dx(px+q)ax2+bx+c
Answered by Ar Brandon last updated on 16/Apr/21
I=∫dx(px+q)ax2+bx+cu=1px+q⇒x=1up−qp⇒du=−p(px+q)2dx=−(u2p)dxI=−∫ua(1up−qp)2+b(1up−qp)+c⋅du(u2p)=∓∫dua(1−uq)2+b(up−u2pq)+cu2p2a(1−2uq+u2q2)+b(up−u2pq)+cu2p2=(aq2−bpq+cp2)u2+(−2aq+bp)u+(a)I=±∫du(aq2−b+cp2)u2+(−2aq+bp)u+(a)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com