Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 138710 by bramlexs22 last updated on 17/Apr/21

∫^( ∞) _1  ((ln x)/((1+x)(1+x^2 ))) dx =?

1lnx(1+x)(1+x2)dx=?

Answered by mathmax by abdo last updated on 17/Apr/21

Φ=∫_1 ^∞  ((logx)/((1+x)(1+x^2 )))dx ⇒Φ=_(x=(1/t))  −∫_0 ^1  ((−logt)/((1+(1/t))(1+(1/t^2 ))))(−(dt/t^2 ))  =−∫_0 ^1  ((tlogt)/((t+1)(t^2  +1)))dt =−∫_0 ^1  (((t+1−1)logt)/((t+1)(t^2  +1)))dt  =−∫_0 ^1  ((logt)/(t^2  +1))dt +∫_0 ^1  ((logt)/((t+1)(t^2 +1)))dt  we have  ∫_0 ^1  ((logt)/(t^2  +1))dt =∫_0 ^1  logtΣ_(n0) ^∞  (−1)^n t^(2n) dt  =Σ_(n=0) ^∞  (−1)^n ∫_0 ^1   t^(2n)  logt dt =Σ_(n=0) ^∞ (−1)^n u_n   u_n =[(t^(2n+1) /(2n+1))logt]_0 ^1 −∫_0 ^1  (t^(2n) /(2n+1))dt  =−(1/((2n+1)^2 )) ⇒∫_0 ^1  ((logt)/(t^2  +1))dt =−Σ_(n=0) ^∞  (((−1)^n )/((2n+1)^2 )) =−K(katalan constant)  ∫_0 ^1  ((logt)/((t+1)(t^2  +1)))dt =(1/2)∫_0 ^1 ((1/(t+1))−((t−1)/(t^2  +1)))logt dt  =(1/2)∫_0 ^1  ((logt)/(t+1))dt −(1/2)∫_0 ^1  (((t−1)logt)/(t^2  +1))dt  ∫_0 ^1  ((logt)/(t+1))dt =[log(t+1)logt]_0 ^1 −∫_0 ^1  ((log(t+1))/t)dt  we have (d/dt)log(1+t)=(1/(1+t)) =Σ_(n=0) ^∞ (−1)^n t^n  ⇒  log(1+t)=Σ_(n=0) ^∞  (−1)^n  (t^(n+1) /(n+1))+c(c=0) =Σ_(n=1) ^∞  (((−1)^(n−1)  t^n )/n) ⇒  ∫_0 ^1 ((log(1+t))/t)dt =Σ_(n=1) ^∞ ∫_0 ^1  (((−1)^(n−1) t^(n−1)  )/n)dt  =Σ_(n=1) ^∞  (((−1)^(n−1) )/n^2 ) =−Σ_(n=1) ^∞  (((−1)^n )/n^2 ) =−(2^(1−2) −1)ξ(2)  =−((1/2)−1)(π^2 /6) =(π^2 /(12))  ∫_0 ^1  (((t−1)logt)/(t^2  +1))dt =∫_0 ^1 (t−1)logtΣ_(n=0) ^∞ (−1)^n  t^(2n)  dt  =Σ_(n=0) ^∞ (−1)^n  ∫_0 ^1 (t^(2n+1) −t^(2n) )logt dt  =Σ_(n=0) ^∞ (−1)^n v_n   with v_n =∫_0 ^1 (t^(2n+1) −t^(2n) )logt dt  =[((t^(2n+2) /(2n+2))−(t^(2n+1) /(2n+1)))logt]_0 ^1 −∫_0 ^1 ((t^(2n+1) /(2n+2))−(t^(2n) /(2n+1)))dt  =−(1/((2n+2)^2 ))+(1/((2n+1)^2 )) ⇒  ∫_0 ^1  (((t−1)logt)/(t^2  +1))dt =−Σ_(n=0) ^∞  (((−1)^n )/(4(n+1)^2 ))+Σ_(n=0) ^∞  (((−1)^n )/((2n+1)^2 ))  =−(1/4)Σ_(n=1) ^∞  (((−1)^(n−1) )/n^2 )+K  =(1/4)Σ_(n=1) ^∞  (((−1)^n )/n^2 )+K =(1/4)(2^(1−2) −1)ξ(2)=(1/4)(−(1/2)).(π^2 /6)  =−(π^2 /(48))   rest to collect the values...

Φ=1logx(1+x)(1+x2)dxΦ=x=1t01logt(1+1t)(1+1t2)(dtt2)=01tlogt(t+1)(t2+1)dt=01(t+11)logt(t+1)(t2+1)dt=01logtt2+1dt+01logt(t+1)(t2+1)dtwehave01logtt2+1dt=01logtn0(1)nt2ndt=n=0(1)n01t2nlogtdt=n=0(1)nunun=[t2n+12n+1logt]0101t2n2n+1dt=1(2n+1)201logtt2+1dt=n=0(1)n(2n+1)2=K(katalanconstant)01logt(t+1)(t2+1)dt=1201(1t+1t1t2+1)logtdt=1201logtt+1dt1201(t1)logtt2+1dt01logtt+1dt=[log(t+1)logt]0101log(t+1)tdtwehaveddtlog(1+t)=11+t=n=0(1)ntnlog(1+t)=n=0(1)ntn+1n+1+c(c=0)=n=1(1)n1tnn01log(1+t)tdt=n=101(1)n1tn1ndt=n=1(1)n1n2=n=1(1)nn2=(2121)ξ(2)=(121)π26=π21201(t1)logtt2+1dt=01(t1)logtn=0(1)nt2ndt=n=0(1)n01(t2n+1t2n)logtdt=n=0(1)nvnwithvn=01(t2n+1t2n)logtdt=[(t2n+22n+2t2n+12n+1)logt]0101(t2n+12n+2t2n2n+1)dt=1(2n+2)2+1(2n+1)201(t1)logtt2+1dt=n=0(1)n4(n+1)2+n=0(1)n(2n+1)2=14n=1(1)n1n2+K=14n=1(1)nn2+K=14(2121)ξ(2)=14(12).π26=π248resttocollectthevalues...

Answered by Kamel last updated on 17/Apr/21

Ω=∫_1 ^(+∞) ((Ln(x))/((1+x)(1+x^2 )))dx=−∫_0 ^1 ((tLn(t)dt)/((1+t)(1+t^2 )))  (t/((1+t)(1+t^2 )))=(1/2)(((t(1−t))/((1−t^2 )))+((t(1−t))/(1+t^2 )))=−(1/2)((1/(1+t))−((1+t)/(1+t^2 )))  ∴ Ω=^(u=t^2 ) (1/2)(∫_0 ^1 ((Ln(t))/(1+t))dt−(1/4)∫_0 ^1 ((Ln(u))/(1+u))du−∫_0 ^1 ((Ln(t))/(1+t^2 ))dt)=−(3/8)∫_0 ^1 ((Ln(1+t))/t)dt+(G/2)           =(3/8)Li_2 (−1)+(G/2)=(G/2)−(π^2 /(32))

Ω=1+Ln(x)(1+x)(1+x2)dx=01tLn(t)dt(1+t)(1+t2)t(1+t)(1+t2)=12(t(1t)(1t2)+t(1t)1+t2)=12(11+t1+t1+t2)Ω=u=t212(01Ln(t)1+tdt1401Ln(u)1+udu01Ln(t)1+t2dt)=3801Ln(1+t)tdt+G2=38Li2(1)+G2=G2π232

Answered by qaz last updated on 17/Apr/21

∫_1 ^∞ ((ln x)/((1+x)(1+x^2 )))dx=∫_0 ^1 ((−xlnx)/((1+x)(1+x^2 )))dx  =(1/2)∫_0 ^1 ((1/(1+x))−((1+x)/(1+x^2 )))lnxdx  =−(1/2)∫_0 ^1 ((ln(1+x))/x)dx−(1/2)Σ_(n=0) ^∞ (−1)^n ∫_0 ^1 x^(2n) lnxdx+(1/4)∫_0 ^1 ((ln(1+x^2 ))/x)dx  =(1/2)Li_2 (−1)+(1/2)Σ_(n=0) ^∞ (((−1)^n )/((2n+1)^2 ))+(1/4)Σ_(n=1) ^∞ (((−1)^(n−1) )/n)∫_0 ^1 x^(2n−1) dx  =(1/2)Li_2 (−1)+(1/2)G+(1/8)Σ_(n=1) ^∞ (((−1)^(n−1) )/n^2 )  =(1/2)Li_2 (−1)+(1/2)G−(1/8)Li_2 (−1)  =(1/2)G+(3/8)(2^(1−2) −1)ζ(2)  =(1/2)G−(π^2 /(32))

1lnx(1+x)(1+x2)dx=01xlnx(1+x)(1+x2)dx=1201(11+x1+x1+x2)lnxdx=1201ln(1+x)xdx12n=0(1)n01x2nlnxdx+1401ln(1+x2)xdx=12Li2(1)+12n=0(1)n(2n+1)2+14n=1(1)n1n01x2n1dx=12Li2(1)+12G+18n=1(1)n1n2=12Li2(1)+12G18Li2(1)=12G+38(2121)ζ(2)=12Gπ232

Answered by Ar Brandon last updated on 17/Apr/21

Ω=∫_1 ^∞ ((lnx)/((1+x)(1+x^2 )))dx , x=(1/t)      =∫_1 ^0 ((ln((1/t)))/((1+(1/t))(1+(1/t^2 ))))∙(−(dt/t^2 ))=−∫_0 ^1 ((tlnt)/((1+t)(1+t^2 )))dt  (t/((t+1)(t^2 +1)))=(a/(t+1))+((bt+c)/(t^2 +1))=((a(t^2 +1)+(bt+c)(t+1))/((t+1)(t^2 +1)))  a=−(1/2) , a+b=0 , b=(1/2), a+c=0, c=(1/2)  (t/((t+1)(t^2 +1)))=−(1/(2(1+t)))+((1+t)/(2(1+t^2 )))  Ω=(1/2)∫_0 ^1 ((lnt)/(1+t))dt−(1/2)∫_0 ^1 ((lnt)/(1+t^2 ))dt−(1/2)∫_0 ^1 ((tlnt)/(1+t^2 ))dt      =(1/2)∫_0 ^1 (((1−t)lnt)/(1−t^2 ))dt−(1/2)∫_0 ^(π/4) ln(tanθ)dθ−(1/8)∫_0 ^1 ((ln(u))/(1+u))du      =(1/8)∫_0 ^1 (((v^(−(1/2)) −1)ln(v))/(1−v))dv+(G/2)−(1/8)∫_0 ^1 (((1−u)ln(u))/(1−u^2 ))du      =(1/8)∫_0 ^1 (((v^(−(1/2)) −1)ln(v))/(1−v))dv+(G/2)−(1/(32))∫_0 ^1 (((p^(−(1/2)) −1)ln(p))/(1−p))dp      =(1/8){ψ′(1)−ψ′((1/2))}+(G/2)−(1/(32)){ψ′(1)−ψ′((1/2))}      =(1/8)(ζ(2)−3ζ(2))+(G/2)−(1/(32))(ζ(2)−3ζ(2))      =(G/2)+(3/(32))((π^2 /6)−(π^2 /2))=(G/2)−(π^2 /(32))

Ω=1lnx(1+x)(1+x2)dx,x=1t=10ln(1t)(1+1t)(1+1t2)(dtt2)=01tlnt(1+t)(1+t2)dtt(t+1)(t2+1)=at+1+bt+ct2+1=a(t2+1)+(bt+c)(t+1)(t+1)(t2+1)a=12,a+b=0,b=12,a+c=0,c=12t(t+1)(t2+1)=12(1+t)+1+t2(1+t2)Ω=1201lnt1+tdt1201lnt1+t2dt1201tlnt1+t2dt=1201(1t)lnt1t2dt120π4ln(tanθ)dθ1801ln(u)1+udu=1801(v121)ln(v)1vdv+G21801(1u)ln(u)1u2du=1801(v121)ln(v)1vdv+G213201(p121)ln(p)1pdp=18{ψ(1)ψ(12)}+G2132{ψ(1)ψ(12)}=18(ζ(2)3ζ(2))+G2132(ζ(2)3ζ(2))=G2+332(π26π22)=G2π232

Terms of Service

Privacy Policy

Contact: info@tinkutara.com