Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 138766 by nadovic last updated on 18/Apr/21

If α and β are the roots of the equation  3x^2 +x+2=0, find the equation whose  roots are  (1/α^2 )  and  (1/β^2 )  and show that  27α^4 =11α+10.

Ifαandβaretherootsoftheequation3x2+x+2=0,findtheequationwhoserootsare1α2and1β2andshowthat27α4=11α+10.

Commented by MJS_new last updated on 18/Apr/21

x^2 +px+q=0 with roots α, β  ⇒  x^2 +((2q−p^2 )/q^2 )x+(1/q^2 )=0 with roots (1/α^2 ), (1/β^2 )

x2+px+q=0withrootsα,βx2+2qp2q2x+1q2=0withroots1α2,1β2

Answered by bramlexs22 last updated on 18/Apr/21

 3x^2 +x+2=0→ { (α),(β) :}  ⇒3((√x))^2 +(√x)+2=0  ⇒(√x) = −2−3x   ⇒x=4+12x+9x^2   ⇒9x^2 +11x+4=0→ { (α^2 ),(β^2 ) :}  and 4x^2 +11x+9=0→ { ((1/α^2 )),((1/β^2 )) :}

3x2+x+2=0{αβ3(x)2+x+2=0x=23xx=4+12x+9x29x2+11x+4=0{α2β2and4x2+11x+9=0{1α21β2

Commented by Rasheed.Sindhi last updated on 18/Apr/21

⇒x=4+12x+3x^2   ⇒^? 3x^2 +11x+4=0→ { (α^2 ),(β^2 ) :}

x=4+12x+3x2?3x2+11x+4=0{α2β2

Commented by bramlexs22 last updated on 18/Apr/21

typo

typo

Answered by Rasheed.Sindhi last updated on 18/Apr/21

α+β=−1/3   ,    αβ=2/3  (1/α^2 )+(1/β^2 )=((α^2 +β^2 )/(α^2 β^2 ))=(((α+β)^2 −2αβ)/((αβ)^2 ))        =(((−1/3)^2 −2(2/3))/((2/3)^2 ))=(((1/9)−(4/3))/(4/9))       =((1−12)/4)=−((11)/4)  (1/α^2 ).(1/β^2 )=(1/((αβ)^2 ))=(1/((2/3)^2 ))=(9/4)  x^2 −((1/α^2 )+(1/β^2 ))x+(1/α^2 ).(1/β^2 )=0  x^2 −(−((11)/4))x+(9/4)=0  4x^2 +11x+9=0

α+β=1/3,αβ=2/31α2+1β2=α2+β2α2β2=(α+β)22αβ(αβ)2=(1/3)22(2/3)(2/3)2=194349=1124=1141α2.1β2=1(αβ)2=1(2/3)2=94x2(1α2+1β2)x+1α2.1β2=0x2(114)x+94=04x2+11x+9=0

Answered by physicstutes last updated on 18/Apr/21

α + β = −(b/a) = −(1/3)   αβ = (c/a) = (2/3)  sum of roots: (1/α^2 ) + (1/β^2 ) = (((α+β)^2 −2αβ)/((αβ)^2 )) = ((((1/9))−(4/3))/(4/9)) = ((−11)/4)  product of roots: ((1/α^2 ))((1/β^2 )) = (1/((αβ)^2 )) = (9/4)  new equation:  x^2 +((11)/4)x + (9/4) = 0  ⇒  4x^2 +11x + 9 = 0

α+β=ba=13αβ=ca=23sumofroots:1α2+1β2=(α+β)22αβ(αβ)2=(19)4349=114productofroots:(1α2)(1β2)=1(αβ)2=94newequation:x2+114x+94=04x2+11x+9=0

Terms of Service

Privacy Policy

Contact: info@tinkutara.com