Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 138797 by bramlexs22 last updated on 18/Apr/21

Let a,b,c be positive constants.  Among all real number x and y   satisfying ax+by=c , find the  maximum value of product  xy.

$${Let}\:{a},{b},{c}\:{be}\:{positive}\:{constants}. \\ $$$${Among}\:{all}\:{real}\:{number}\:{x}\:{and}\:{y}\: \\ $$$${satisfying}\:{ax}+{by}={c}\:,\:{find}\:{the} \\ $$$${maximum}\:{value}\:{of}\:{product} \\ $$$${xy}. \\ $$

Answered by TheSupreme last updated on 18/Apr/21

if b=0 or a=0 xy is unlimited  else: y=−(a/b)x−(c/b)  (a/b)=m   (c/b)=q  y=−mx−q  σ=xy=x(mx+q)=−mx^2 −qx=−x(mx+q)  (∂σ/∂x)=−2mx−q=0 →x=−(q/(2m))  σ_(max) =(q/(2m))((q/2))=(q^2 /(4m))=(c^2 /(4ab))

$${if}\:{b}=\mathrm{0}\:{or}\:{a}=\mathrm{0}\:{xy}\:{is}\:{unlimited} \\ $$$${else}:\:{y}=−\frac{{a}}{{b}}{x}−\frac{{c}}{{b}} \\ $$$$\frac{{a}}{{b}}={m}\: \\ $$$$\frac{{c}}{{b}}={q} \\ $$$${y}=−{mx}−{q} \\ $$$$\sigma={xy}={x}\left({mx}+{q}\right)=−{mx}^{\mathrm{2}} −{qx}=−{x}\left({mx}+{q}\right) \\ $$$$\frac{\partial\sigma}{\partial{x}}=−\mathrm{2}{mx}−{q}=\mathrm{0}\:\rightarrow{x}=−\frac{{q}}{\mathrm{2}{m}} \\ $$$$\sigma_{{max}} =\frac{{q}}{\mathrm{2}{m}}\left(\frac{{q}}{\mathrm{2}}\right)=\frac{{q}^{\mathrm{2}} }{\mathrm{4}{m}}=\frac{{c}^{\mathrm{2}} }{\mathrm{4}{ab}} \\ $$

Answered by EDWIN88 last updated on 18/Apr/21

without calculus.  let  { ((ax = u)),((by = v)) :} ⇒ u+v = c ; so u.v minimum  where  { ((u=(c/2))),((v=(c/2))) :} then (uv)_(min) = (c^2 /4)  ⇒(ax.by)_(min) = (c^2 /4) or xy_(min)  = (c^2 /(4ab)).

$$\mathrm{without}\:\mathrm{calculus}. \\ $$$$\mathrm{let}\:\begin{cases}{\mathrm{ax}\:=\:\mathrm{u}}\\{\mathrm{by}\:=\:\mathrm{v}}\end{cases}\:\Rightarrow\:\mathrm{u}+\mathrm{v}\:=\:\mathrm{c}\:;\:\mathrm{so}\:\mathrm{u}.\mathrm{v}\:\mathrm{minimum} \\ $$$$\mathrm{where}\:\begin{cases}{\mathrm{u}=\frac{\mathrm{c}}{\mathrm{2}}}\\{\mathrm{v}=\frac{\mathrm{c}}{\mathrm{2}}}\end{cases}\:\mathrm{then}\:\left(\mathrm{uv}\right)_{\mathrm{min}} =\:\frac{\mathrm{c}^{\mathrm{2}} }{\mathrm{4}} \\ $$$$\Rightarrow\left(\mathrm{ax}.\mathrm{by}\right)_{\mathrm{min}} =\:\frac{\mathrm{c}^{\mathrm{2}} }{\mathrm{4}}\:\mathrm{or}\:\mathrm{xy}_{\mathrm{min}} \:=\:\frac{\mathrm{c}^{\mathrm{2}} }{\mathrm{4ab}}.\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com