Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 138819 by qaz last updated on 18/Apr/21

(1)::f(x)=∫_0 ^1 ∣x−2t∣dt,           ∫_0 ^3 f(x)dx=?  −−−−−−−−−−−−−−−−−−−  (2)::f(x)=x^2 ∙∫_1 ^x (dt/(t^3 −3t^2 +3t)),             f^((2019)) (1)=?

(1)::f(x)=01x2tdt,03f(x)dx=?(2)::f(x)=x21xdtt33t2+3t,f(2019)(1)=?

Answered by TheSupreme last updated on 18/Apr/21

∫_0 ^1 ∣x−2t∣dt=  x<0 → ∫_0 ^1 ∣x−2t∣=∫_0 ^1 −x+2t dt = −xt+t^2 =1−x  x>2 → ∫_0 ^1 ∣x−2t∣=∫_0 ^1 x−2tdt=xt−t^2 =x−1  0<x<2  ∫_0 ^1 ∣x−2t∣dt=∫_0 ^(x/2) x−2tdt + ∫_(x/2) ^1 −x+2tdt=  =xt−t^2 ∣_0 ^(x/2) +(−xt+t^2 )∣_(x/2) ^1 =(x^2 /2)−(x^2 /4)−x+1+(x^2 /2)−(x^2 /4)= (x^2 /2)−x+1

01x2tdt=x<001x2t∣=01x+2tdt=xt+t2=1xx>201x2t∣=01x2tdt=xtt2=x10<x<201x2tdt=0x2x2tdt+x21x+2tdt==xtt20x2+(xt+t2)x21=x22x24x+1+x22x24=x22x+1

Answered by mathmax by abdo last updated on 18/Apr/21

f(x)=∫_0 ^1 ∣x−2t∣dt =_(2t=u)    (1/2)∫_0 ^2 ∣x−u∣du  ⇒2f(x)=∫_0 ^x ∣x−u∣du +∫_x ^2 ∣x−u∣du =∫_0 ^x (x−u)du+∫_x ^2 (u−x)du  =[xu−(u^2 /2)]_(u=0) ^x  +[(u^2 /2)−xu]_x ^2 =x^2 −(x^2 /2) +2−2x−(x^2 /2)+x^2   =2x^2 −x^2 +2−2x =x^2 −2x+2 ⇒f(x)=(x^2 /2)−x+1 ⇒  ∫_0 ^3 f(x)dx=∫_0 ^3 ((x^2 /2)−x+1)dx =[(x^3 /6)−(x^2 /2)+x]_0 ^3 =((27)/6)−(9/2)+3=...

f(x)=01x2tdt=2t=u1202xudu2f(x)=0xxudu+x2xudu=0x(xu)du+x2(ux)du=[xuu22]u=0x+[u22xu]x2=x2x22+22xx22+x2=2x2x2+22x=x22x+2f(x)=x22x+103f(x)dx=03(x22x+1)dx=[x36x22+x]03=27692+3=...

Answered by mathmax by abdo last updated on 18/Apr/21

f(x)=x^2 ∫_1 ^x  (dt/(t(t^2 −3t+3)))   let decompose F(t)=(1/(t(t^2 −3t+3)))  ⇒F(t)=(a/t)+((bt+c)/(t^2  −3t+3))  we have a=(1/3)  lim_(t→+∞) tF(t)=0 =a+b ⇒b=−(1/3)  F(1)=1 =a+b+c ⇒c=1−0=1 ⇒F(x)=(1/(3t))+((−(t/3)+1)/(t^2 −3t+3)) ⇒  ∫_1 ^x  F(t)dt =∫_1 ^x  (dt/(3t))−(1/6)∫_1 ^x  ((2t−3−3)/(t^2 −3t+3))dt  =(1/3)log∣x∣−(1/6)[log(t^2 −3t+3)]_1 ^x +(3/6)∫_1 ^x  (dt/(t^2 −3t+3))  =(1/3)log∣x∣−(1/6)log(x^2 −3x+3)+(3/6)∫_1 ^x  (dt/(t^2 −3t+3))  ∫_1 ^x  (dt/(t^2 −3t+3)) =∫_1 ^x (dt/(t^2 −2(3/2)t+(9/4)+3−(9/4)))  =∫_1 ^x  (dt/((t−(3/2))^2  +(3/4)))=_(t−(3/2)=((√3)/2)y) (4/3)  ∫_(−(1/( (√3)))) ^((2x−3)/( (√3)))     (1/(y^2  +1)).((√3)/2)dy  =(2/( (√3)))[arctany]_(−(1/( (√3)))) ^((2x−3)/( (√3)))    =(2/( (√3)))(arctan(((2x−3)/( (√3))))+arctan((1/( (√3)))))  ⇒∫_1 ^x  F(x)dx=(1/3)log∣x∣−(1/6)log(x^2 −3x+3)  +(1/( (√3)))(arctan(((2x−3)/( (√3))))+(π/6)) ⇒  f(x)=(1/3)x^2 log∣x∣−(x^2 /6)log(x^2 −3x+3)+(x^2 /( (√3)))(arctan(((2x−3)/( (√3))))+(π/6))  rest to calculate f^((n)) (x)....be continued....

f(x)=x21xdtt(t23t+3)letdecomposeF(t)=1t(t23t+3)F(t)=at+bt+ct23t+3wehavea=13limt+tF(t)=0=a+bb=13F(1)=1=a+b+cc=10=1F(x)=13t+t3+1t23t+31xF(t)dt=1xdt3t161x2t33t23t+3dt=13logx16[log(t23t+3)]1x+361xdtt23t+3=13logx16log(x23x+3)+361xdtt23t+31xdtt23t+3=1xdtt2232t+94+394=1xdt(t32)2+34=t32=32y43132x331y2+1.32dy=23[arctany]132x33=23(arctan(2x33)+arctan(13))1xF(x)dx=13logx16log(x23x+3)+13(arctan(2x33)+π6)f(x)=13x2logxx26log(x23x+3)+x23(arctan(2x33)+π6)resttocalculatef(n)(x)....becontinued....

Commented by qaz last updated on 19/Apr/21

it′s just a fill−in−the−blanks exercise,  i dont think of that so complicate.

itsjustafillintheblanksexercise,idontthinkofthatsocomplicate.

Answered by ajfour last updated on 19/Apr/21

f(x)=2∫_0 ^( 1) (√((t−(x/2))^2 ))dx  =(t−(x/2))(√((t−(x/2))^2 )) ∣_0 ^1   =(1−(x/2))(√((1−(x/2))^2 ))+(x/2)(√(x^2 /4))  ∫_0 ^( 3) f(x)dx=∫_0 ^( 2) {(1−(x/2))^2 dx      −∫_2 ^( 3) {(1−(x/2))^2 dx+∫_0 ^( 3) (x^2 /4)dx    =(2/3)((x/2)−1)^3 ∣_0 ^2 −(2/3)((x/2)−1)^3 ∣_2 ^3          +(x^3 /(12))∣_0 ^3     =(2/3)−(1/(12))+(9/4)=((17)/6)

f(x)=201(tx2)2dx=(tx2)(tx2)201=(1x2)(1x2)2+x2x2403f(x)dx=02{(1x2)2dx23{(1x2)2dx+03x24dx=23(x21)30223(x21)323+x31203=23112+94=176

Answered by ajfour last updated on 19/Apr/21

(df/dx)=(x^2 /(x^3 −3x^2 +3x))+((2f)/x)  x^2 (((df(x))/dx))−2xf(x)=(x^3 /(x^2 −3x+3))  d(((f(x))/x^2 ))=(1/(x(x^2 −3x+3)))  (3/(3x(x^2 −3x+3)))=(1/(3x))+((Ax+B)/(x^2 −3x+3))   ⇒  x^2 −3x+3+3Ax^2 +3Bx=3  ⇒  A=−(1/3),  B=1=(3/3)  f(x)=x^2 {((ln x)/3)−(1/3)∫(((x−3)dx)/(x^2 −3x+3))+k}  f^( 1) (x)=((2xln x)/3)+(x/3)−((x^2 (x−3))/(3(x^2 −3x+3)))        +2x(((f(x))/x^2 )−((ln x)/3))  f^( 1) (x)=(x/3)−((x^2 (x−3))/(3(x^2 −3x+3)))+((2f(x))/x)  xf^( 1) (x)=(x^2 /3)−((x^2 (x^2 −3x))/(3(x^2 −3x+3)))+2f(x)  f^( 1) (x)+xf^( 2) (x)=((2x(x^2 −3x+3)−x^2 (2x−3))/((x^2 −3x+3)^2 ))+2f^( 1) (x)   xf^( 2) (x)=−((3x^2 )/((x^2 −3x+3)^2 ))+f^( 1) (x)  x(x^2 −3x+3)^2 f^( 2) (x)+3x^2        =(x^2 −3x+3)^2 f^( 1) (x)  {(x^2 −3x+3)^2 +2x(2x−3)(x^2 −3x+3)}f^( 2) (x)  +x(x^2 −3x+3)^2 f^( 3) (x)+6x  =2(x^2 −3x+3)(2x−3)f^( 1) (x)       +(x^2 −3x+3)^2 f^( 2) (x)  ⇒ 2x(2x−3)(x^2 −3x+3)f^( 2) (x)    +x(x^2 −3x+3)^2 f^( 3) (x)+6    =2(x^2 −3x+3)(2x−3)f^( 1) (x)  ⇒  2(2x−3)(3x^2 )=6(x^2 −3x+3)            +x(x^2 −3x+3)^2 f^( 3) (x)  f^( 3) (x)=((6x^2 (2x−3)−6(x^2 −3x+3))/(x(x^2 −3x+3)^2 ))     =((6(2x^3 −4x^2 +3x−3))/(x(x^2 −3x+3)^2 ))  let  x=t+h  f^( 3) (t)=((6(2t^3 +6ht^2 +6h^2 t+h^3 −4t^2 −8ht−4h^2 +3t+3h−3))/((t+h)(t^2 +2ht+h^2 −3t−3h+3)^2 ))  let  −2h^3 +6h^3 −6h^3 +h^3 −4h^2 +8h^2 −4h^2 −3h+3h−3=0  ⇒  −h^3 −3=0  h=−3^(1/3)   ...

dfdx=x2x33x2+3x+2fxx2(df(x)dx)2xf(x)=x3x23x+3d(f(x)x2)=1x(x23x+3)33x(x23x+3)=13x+Ax+Bx23x+3x23x+3+3Ax2+3Bx=3A=13,B=1=33f(x)=x2{lnx313(x3)dxx23x+3+k}f1(x)=2xlnx3+x3x2(x3)3(x23x+3)+2x(f(x)x2lnx3)f1(x)=x3x2(x3)3(x23x+3)+2f(x)xxf1(x)=x23x2(x23x)3(x23x+3)+2f(x)f1(x)+xf2(x)=2x(x23x+3)x2(2x3)(x23x+3)2+2f1(x)xf2(x)=3x2(x23x+3)2+f1(x)x(x23x+3)2f2(x)+3x2=(x23x+3)2f1(x){(x23x+3)2+2x(2x3)(x23x+3)}f2(x)+x(x23x+3)2f3(x)+6x=2(x23x+3)(2x3)f1(x)+(x23x+3)2f2(x)2x(2x3)(x23x+3)f2(x)+x(x23x+3)2f3(x)+6=2(x23x+3)(2x3)f1(x)2(2x3)(3x2)=6(x23x+3)+x(x23x+3)2f3(x)f3(x)=6x2(2x3)6(x23x+3)x(x23x+3)2=6(2x34x2+3x3)x(x23x+3)2letx=t+hf3(t)=6(2t3+6ht2+6h2t+h34t28ht4h2+3t+3h3)(t+h)(t2+2ht+h23t3h+3)2let2h3+6h36h3+h34h2+8h24h23h+3h3=0h33=0h=31/3...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com