Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 138821 by mnjuly1970 last updated on 18/Apr/21

               ....... nice .. .. .. calculus......  find the value of:           Θ=Σ_(n=−∞ ) ^∞ (1/(6n^2 +5n+1))=?

.......nice......calculus......findthevalueof:Θ=n=16n2+5n+1=?

Commented by Kamel last updated on 19/Apr/21

You can use digamma function or residue theorem.

Youcanusedigammafunctionorresiduetheorem.

Answered by Kamel last updated on 19/Apr/21

Θ=Σ_(n=−∞) ^(+∞) (1/(6n^2 +5n+1))=(1/6)Σ_(n=−∞) ^(+∞) (1/((n+(1/2))(n+(1/3))))     =lim_(N→+∞) Σ_(n=0) ^N ((1/(n+(1/3)))−(1^ /(n+(1/2)))+(1/(−n+(1/3)))−(1/(−n+(1/2))))−1     =lim_(N→+∞) Σ_(n=0) ^N {3((1/(3n+1))−(1/(3n−1)))−2((1/(2n+1))−(1/(2n−1)))}−1     =lim_(N→+∞) Σ_(n=0) ^(N−1) 3((1/(3n+1))−(1/(3n+2)))=3Σ_(n=0) ^(+∞) (1/((3n+1)(3n+2)))     Put: f(x)=Σ_(n=0) ^(+∞) (x^(3n+2) /((3n+1)(3n+2))), 0≤x<1.  f′′(x)=Σ_(n=0) ^(+∞) x^(3n) =(1/(1−x^3 ))=(1/((1−x)(1+x+x^2 )))=(1/3)((1/(1−x))+((2x+1+3)/(2(x^2 +x+1))))   ∴ f′(x)+C=(1/3)(−Ln(1−x)+(1/2)Ln(x^2 +x+1)+(√3)Arctan((2/( (√3)))(x+(1/2)))  f′(0)=0⇒C=(π/( 6(√3)))  f(1)=−(1/3)∫_0 ^1 Ln(x)dx+(1/6)∫_0 ^1 Ln(x^2 +x+1)dx+(1/( (√3)))∫_0 ^1 Arctan((2/( (√3)))(x+(1/2)))dx−(π/( 6(√3)))  I=∫Ln(x^2 +x+1)dx=xLn(x^2 +x+1)−∫((2(x^2 +x+1)−x−2)/(x^2 +x+1))dx    =xLn(x^2 +x+1)−2x+∫((x+2)/(x^2 +x+1))dx    =(x+(1/2))Ln(x^2 +x+1)−2x+(√3)Arctan((2/( (√3)))(x+(1/2)))  ∫Arctan(x)dx=xArctan(x)−(1/2)Ln(1+x^2 )  So: f(1)=(1/3)+(1/6)((3/2)Ln(3)−2+((π(√3))/3)−((π(√3))/6))+(1/2)((π/( (√3)))−(π/(6(√3)))−(1/( 2))Ln(3))−(π/(6(√3)))                   =((π(√3))/(36))+((5π)/(12(√3)))−(π/( 6(√3)))=(π/(3(√3))), Θ=3f(1)  ∴       Θ=(π/( (√3)))       ⇒          𝚺_(n=−∞) ^(+∞) (1/(6n^2 +5n+1))=((𝛑(√3))/3)                                          BENAICHA Kamel

Θ=+n=16n2+5n+1=16+n=1(n+12)(n+13)=limN+Nn=0(1n+131n+12+1n+131n+12)1=limN+Nn=0{3(13n+113n1)2(12n+112n1)}1=limN+N1n=03(13n+113n+2)=3+n=01(3n+1)(3n+2)Put:f(x)=+n=0x3n+2(3n+1)(3n+2),0x<1.f(x)=+n=0x3n=11x3=1(1x)(1+x+x2)=13(11x+2x+1+32(x2+x+1))f(x)+C=13(Ln(1x)+12Ln(x2+x+1)+3Arctan(23(x+12))f(0)=0C=π63f(1)=1301Ln(x)dx+1601Ln(x2+x+1)dx+1301Arctan(23(x+12))dxπ63I=Ln(x2+x+1)dx=xLn(x2+x+1)2(x2+x+1)x2x2+x+1dx=xLn(x2+x+1)2x+x+2x2+x+1dx=(x+12)Ln(x2+x+1)2x+3Arctan(23(x+12))Arctan(x)dx=xArctan(x)12Ln(1+x2)So:f(1)=13+16(32Ln(3)2+π33π36)+12(π3π6312Ln(3))π63=π336+5π123π63=π33,Θ=3f(1)Θ=π3+n=16n2+5n+1=π33BENAICHAKamel

Commented by mnjuly1970 last updated on 19/Apr/21

thanks alot mr Kmel...

thanksalotmrKmel...

Answered by Dwaipayan Shikari last updated on 19/Apr/21

Σ_(n=−∞) ^∞ (1/((an^2 +bn+c)))=(1/( (√(b^2 −4ac))))(ψ(((b+(√(b^2 −4ac)))/2))−ψ(((b−(√(b^2 −4ac)))/2)))+Λ  Λ=(1/( (√(b^2 −4ac))))(ψ(1−(b/(2a))+((√(b^2 −4ac))/(2a)))−ψ(1−(b/(2a))−((√(b^2 −4ac))/(2a))))  Σ_(n=−∞) ^∞ (1/((6n^2 +5n+1)))=ψ((1/2))−ψ((1/3))+ψ((2/3))−ψ((1/2))  =πcot((π/3))=(π/( (√3)))

n=1(an2+bn+c)=1b24ac(ψ(b+b24ac2)ψ(bb24ac2))+ΛΛ=1b24ac(ψ(1b2a+b24ac2a)ψ(1b2ab24ac2a))n=1(6n2+5n+1)=ψ(12)ψ(13)+ψ(23)ψ(12)=πcot(π3)=π3

Commented by mnjuly1970 last updated on 19/Apr/21

 thank you mr Payan...

thankyoumrPayan...

Answered by mnjuly1970 last updated on 19/Apr/21

Terms of Service

Privacy Policy

Contact: info@tinkutara.com