Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 138851 by bramlexs22 last updated on 19/Apr/21

Find max value of   x^2 −3xy−2y^2  subject to   x^2 +xy+y^2 =1.

Findmaxvalueofx23xy2y2subjecttox2+xy+y2=1.

Answered by ajfour last updated on 19/Apr/21

F=x^2 −3xy−2y^2   F=x^2 +3x^2 +3y^2 −3−2y^2   F=4x^2 +y^2 −3  y=−(x/2)±(√((x^2 /4)+1−x^2 ))  y=−(x/2)±(√(1−((3x^2 )/4)))  F=4x^2 −2−x^2 +(x^2 /2)∓x(√(1−((3x^2 )/4)))  F=((7x^2 )/2)−2∓x(√(1−((3x^2 )/4)))  (dF/dx)=7x∓{(√(1−((3x^2 )/4)))−((3x^2 )/(4(√(1−((3x^2 )/4)))))}=0  ⇒ 49x^2 =1−((3x^2 )/4)+((9x^4 )/(16−12x^2 ))−((3x^2 )/2)  ⇒ ((205x^2 )/4)=1+((9x^4 )/(16−12x^2 ))  say x^2 =t  ⇒  205x^2 (4−3x^2 )=16−12x^2 +9x^4   ⇒  624x^4 −832x^2 +16=0  ⇒  39x^4 −52x^2 +1=0  x^2 =(2/3)±(√((4/9)−(1/(39))))  x^2 =(2/3)±(7/(3(√(13))))  but  x^2 <(4/3)  now compare  F=((7x^2 )/2)−2+(√(x^2 −((3x^4 )/4)))  for  x^2 =0, (4/3), (2/3)±(7/(3(√(13))))  F(x^2 =0)=−2  F(x^2 =(4/3))=(8/3)≈2.6667  F(x^2 =(2/3)+(7/(3(√(13)))))≈ 2.737  F(x^2 =(2/3)−(7/(3(√(13)))))≈ −1.793  ⇒  F_(max) =F(x^2 =(2/3)+(7/(3(√(13)))))    = (7/2)(((26+7(√(13)))/(39)))+{(((26+7(√(13)))/(39)))[1−(3/4)(((26+7(√(13)))/(39)))]}^(1/2)    ≈ 2.737

F=x23xy2y2F=x2+3x2+3y232y2F=4x2+y23y=x2±x24+1x2y=x2±13x24F=4x22x2+x22x13x24F=7x222x13x24dFdx=7x{13x243x2413x24}=049x2=13x24+9x41612x23x22205x24=1+9x41612x2sayx2=t205x2(43x2)=1612x2+9x4624x4832x2+16=039x452x2+1=0x2=23±49139x2=23±7313butx2<43nowcompareF=7x222+x23x44forx2=0,43,23±7313F(x2=0)=2F(x2=43)=832.6667F(x2=23+7313)2.737F(x2=237313)1.793Fmax=F(x2=23+7313)=72(26+71339)+{(26+71339)[134(26+71339)]}1/22.737

Commented by ajfour last updated on 19/Apr/21

Answered by mr W last updated on 19/Apr/21

say k=x^2 −3xy−2y^2   F=x^2 −3xy−2y^2 +λ(x^2 +xy+y^2 −1)  (∂F/∂x)=2x−3y+λ(2x+y)=0  ⇒2(1+λ)x−(3−λ)y=0   ...(i)  (∂F/∂y)=−3x−4y+λ(x+2y)=0  ⇒(λ−3)x+2(λ−2)y=0   ...(ii)  (x/y)=((3−λ)/(2(1+λ)))=((2(λ−2))/(3−λ))  ⇒3λ^2 +2λ−17=0  λ=((−1±2(√(13)))/3)  ⇒(x/y)=((2(λ−2))/(3−λ))=((±(√(13))−3)/4)=δ  x^2 +xy+y^2 =1 ⇒y^2 =(1/(δ^2 +δ+1))  k=(δ^2 −3δ−2)y^2 =((δ^2 −3δ−2)/(δ^2 +δ+1))  with δ=(((√(13))−3)/4):  k_(min) =((1−2(√(13)))/3)≈−2.070368  with δ=((−(√(13))−3)/4):  k_(max) =((1+2(√(13)))/3)≈2.737034

sayk=x23xy2y2F=x23xy2y2+λ(x2+xy+y21)Fx=2x3y+λ(2x+y)=02(1+λ)x(3λ)y=0...(i)Fy=3x4y+λ(x+2y)=0(λ3)x+2(λ2)y=0...(ii)xy=3λ2(1+λ)=2(λ2)3λ3λ2+2λ17=0λ=1±2133xy=2(λ2)3λ=±1334=δx2+xy+y2=1y2=1δ2+δ+1k=(δ23δ2)y2=δ23δ2δ2+δ+1withδ=1334:kmin=121332.070368withδ=1334:kmax=1+21332.737034

Commented by mr W last updated on 19/Apr/21

Commented by mr W last updated on 19/Apr/21

green: x^2 +xy+y^2 =1  red/pink: x^2 −3xy−2y^2 =k

green:x2+xy+y2=1red/pink:x23xy2y2=k

Answered by ajfour last updated on 19/Apr/21

let  y=tx  x^2 (1+t+t^2 )=1  f(x,t)=f=x^2 (1−3t−2t^2 )   f=((1−3t−2t^2 )/(t^2 +t+1))  f=−2−((t−3)/(t^2 +t+1))  f=−2−(1/(t+4+((13)/(t−3))))  f=−2−(1/(t−3+((13)/(t−3))+7))  f is f_(max)  if  h(t)=t−3+((13)/(t−3))+7  is negative with minimum  absolute value.  h′(t)=1−((13)/((t−3)^2 ))=0  at  t−3=−(√(13))  h_(min) =7−2(√(13))  f_(max) =−2+(1/(2(√(13))−7))           =−2+((2(√(13))+7)/3)  f_(max) =((2(√(13))+1)/3) ≈ 2.73703418

lety=txx2(1+t+t2)=1f(x,t)=f=x2(13t2t2)f=13t2t2t2+t+1f=2t3t2+t+1f=21t+4+13t3f=21t3+13t3+7fisfmaxifh(t)=t3+13t3+7isnegativewithminimumabsolutevalue.h(t)=113(t3)2=0att3=13hmin=7213fmax=2+12137=2+213+73fmax=213+132.73703418

Commented by ajfour last updated on 19/Apr/21

Commented by mr W last updated on 20/Apr/21

nice approach!

niceapproach!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com