Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 138860 by qaz last updated on 19/Apr/21

Prove::       ∫_0 ^∞ ((x^3 −sin^3 x)/x^5 )dx=((13)/(32))π

Prove::0x3sin3xx5dx=1332π

Answered by Dwaipayan Shikari last updated on 19/Apr/21

∫_0 ^∞ ((x^3 −sin^3 x)/x^5 )dx  ∫_0 ^∞ ((x^3 −(3sinx−sin3x)/4)/x^5 )dx  J(a)+G(3)=(1/4)∫_0 ^∞ ((4x^3 −3sin(ax))/x^5 )+(1/4)∫_0 ^∞ ((sin3x)/x^5 )dx  J′′(a)=(3/4)∫_0 ^∞ ((sin(ax))/x^3 )dx=((3a^2 )/4)∫_0 ^∞ ((sin(t))/( t^3 ))dt=((3a^2 )/4).(π/(2Γ(3)sin(((3π)/2))))  =−((3a^2 π)/(16)) ⇒J(a)=−((a^4 π)/(64))+Ka+C    K=0     C=0  G(3)=(3^4 /4).(π/(2Γ(5)sin(((5π)/2))))=((81π)/(192))=((27π)/(64))  J′′(1)+G(3)=((−π)/(64))+((27π)/(64))=((13π)/(32))

0x3sin3xx5dx0x3(3sinxsin3x)/4x5dxJ(a)+G(3)=1404x33sin(ax)x5+140sin3xx5dxJ(a)=340sin(ax)x3dx=3a240sin(t)t3dt=3a24.π2Γ(3)sin(3π2)=3a2π16J(a)=a4π64+Ka+CK=0C=0G(3)=344.π2Γ(5)sin(5π2)=81π192=27π64J(1)+G(3)=π64+27π64=13π32

Commented by qaz last updated on 19/Apr/21

thank you sir

thankyousir

Commented by mathmax by abdo last updated on 20/Apr/21

what mean J(a) sir...

whatmeanJ(a)sir...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com