Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 138888 by mathdanisur last updated on 19/Apr/21

Calculus:  lim_(x→∞)  [ (x^2 /2^x ) + (2^x /(x!)) + ((x!)/x^x ) ] = ?

$${Calculus}: \\ $$$$\underset{{x}\rightarrow\infty} {{lim}}\:\left[\:\frac{{x}^{\mathrm{2}} }{\mathrm{2}^{{x}} }\:+\:\frac{\mathrm{2}^{{x}} }{{x}!}\:+\:\frac{{x}!}{{x}^{{x}} }\:\right]\:=\:? \\ $$

Answered by mathmax by abdo last updated on 20/Apr/21

lim_(x→+∞) (x^2 /2^x )=lim_(x→+∞) x^2  2^(−x)  =0     x! ∼ x^x e^(−x) (√(2πx))( +∞) ⇒(2^x /(x!))∼(2^x /(x^x  e^(−x) (√(2πx)))) =((2^x  x^(−x)  e^x )/( (√(2πx))))  =((e^(xlog2)  .e^(−xlogx)  e^x )/( (√(2πx)))) =(e^(xlog2−xlogx+x) /( (√(2πx)))) =(e^(x(log2−logx +1)) /( (√(2πx)))) →0(x→+∞)  ((x!)/x^x )∼e^(−x) (√(2πx))→0 ⇒lim_(x→+∞) ((x^2 /2^x )+(2^x /(x!)) +((x!)/x^x ))=0

$$\mathrm{lim}_{\mathrm{x}\rightarrow+\infty} \frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}^{\mathrm{x}} }=\mathrm{lim}_{\mathrm{x}\rightarrow+\infty} \mathrm{x}^{\mathrm{2}} \:\mathrm{2}^{−\mathrm{x}} \:=\mathrm{0}\:\:\: \\ $$$$\mathrm{x}!\:\sim\:\mathrm{x}^{\mathrm{x}} \mathrm{e}^{−\mathrm{x}} \sqrt{\mathrm{2}\pi\mathrm{x}}\left(\:+\infty\right)\:\Rightarrow\frac{\mathrm{2}^{\mathrm{x}} }{\mathrm{x}!}\sim\frac{\mathrm{2}^{\mathrm{x}} }{\mathrm{x}^{\mathrm{x}} \:\mathrm{e}^{−\mathrm{x}} \sqrt{\mathrm{2}\pi\mathrm{x}}}\:=\frac{\mathrm{2}^{\mathrm{x}} \:\mathrm{x}^{−\mathrm{x}} \:\mathrm{e}^{\mathrm{x}} }{\:\sqrt{\mathrm{2}\pi\mathrm{x}}} \\ $$$$=\frac{\mathrm{e}^{\mathrm{xlog2}} \:.\mathrm{e}^{−\mathrm{xlogx}} \:\mathrm{e}^{\mathrm{x}} }{\:\sqrt{\mathrm{2}\pi\mathrm{x}}}\:=\frac{\mathrm{e}^{\mathrm{xlog2}−\mathrm{xlogx}+\mathrm{x}} }{\:\sqrt{\mathrm{2}\pi\mathrm{x}}}\:=\frac{\mathrm{e}^{\mathrm{x}\left(\mathrm{log2}−\mathrm{logx}\:+\mathrm{1}\right)} }{\:\sqrt{\mathrm{2}\pi\mathrm{x}}}\:\rightarrow\mathrm{0}\left(\mathrm{x}\rightarrow+\infty\right) \\ $$$$\frac{\mathrm{x}!}{\mathrm{x}^{\mathrm{x}} }\sim\mathrm{e}^{−\mathrm{x}} \sqrt{\mathrm{2}\pi\mathrm{x}}\rightarrow\mathrm{0}\:\Rightarrow\mathrm{lim}_{\mathrm{x}\rightarrow+\infty} \left(\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}^{\mathrm{x}} }+\frac{\mathrm{2}^{\mathrm{x}} }{\mathrm{x}!}\:+\frac{\mathrm{x}!}{\mathrm{x}^{\mathrm{x}} }\right)=\mathrm{0} \\ $$

Commented by mathdanisur last updated on 20/Apr/21

thank you very much sir

$${thank}\:{you}\:{very}\:{much}\:{sir} \\ $$

Commented by Rasheed.Sindhi last updated on 20/Apr/21

lim_(x→+∞) x^2  2^(−x) =∞.0 ( indeterminate form)≠0  Please sir explain.

$$\mathrm{lim}_{\mathrm{x}\rightarrow+\infty} \mathrm{x}^{\mathrm{2}} \:\mathrm{2}^{−\mathrm{x}} =\infty.\mathrm{0}\:\left(\:{indeterminate}\:{form}\right)\neq\mathrm{0} \\ $$$${Please}\:\boldsymbol{{sir}}\:{explain}. \\ $$

Commented by mnjuly1970 last updated on 20/Apr/21

  lim_(x→∞) (x^2 /2^x ) =_(hopital) ^(∞/∞)  lim_(x→+∞) ((2x)/(2^x .ln(x)))      =lim_(x→∞) (2/(2^x .ln^2 (x)))=((→2)/(→∞)) →0

$$\:\:{lim}_{{x}\rightarrow\infty} \frac{{x}^{\mathrm{2}} }{\mathrm{2}^{{x}} }\:\underset{{hopital}} {\overset{\frac{\infty}{\infty}} {=}}\:{lim}_{{x}\rightarrow+\infty} \frac{\mathrm{2}{x}}{\mathrm{2}^{{x}} .{ln}\left({x}\right)} \\ $$$$\:\:\:\:={lim}_{{x}\rightarrow\infty} \frac{\mathrm{2}}{\mathrm{2}^{{x}} .{ln}^{\mathrm{2}} \left({x}\right)}=\frac{\rightarrow\mathrm{2}}{\rightarrow\infty}\:\rightarrow\mathrm{0} \\ $$

Commented by Rasheed.Sindhi last updated on 20/Apr/21

But mathmax sir didn′t use l′hopital  rule.He evaluated the limit directly!  Anyway you′re rivht and thanks sir!

$$\mathcal{B}{ut}\:{mathmax}\:{sir}\:{didn}'{t}\:{use}\:{l}'{hopital} \\ $$$${rule}.{He}\:{evaluated}\:{the}\:{limit}\:{directly}! \\ $$$$\mathcal{A}{nyway}\:{you}'{re}\:{rivht}\:{and}\:{thanks}\:{sir}! \\ $$

Commented by Rasheed.Sindhi last updated on 20/Apr/21

Thαnks very much sir!

$$\mathcal{T}{h}\alpha{nks}\:{very}\:{much}\:{sir}! \\ $$

Commented by mathmax by abdo last updated on 20/Apr/21

i use that e^x  defeat all polynom at ∞...!

$$\mathrm{i}\:\mathrm{use}\:\mathrm{that}\:\mathrm{e}^{\mathrm{x}} \:\mathrm{defeat}\:\mathrm{all}\:\mathrm{polynom}\:\mathrm{at}\:\infty...! \\ $$

Commented by mathmax by abdo last updated on 20/Apr/21

let prove this result  f(x)=x^2  2^(−x)  =x^2 e^(−xlog2)   changement e^(−xlog2) =t(t→0) ⇒−xlog2=logt ⇒x=−((logt)/(log2)) ⇒  x^2  e^(−xlog2) =−((log^2 t)/(log^2 2))×t =−((tlog^2 t)/(log^2 2))  due to lim_(t→0) tlogt=0 ⇒  lim_(x→+∞) x^2 e^(−xlog2)  =0

$$\mathrm{let}\:\mathrm{prove}\:\mathrm{this}\:\mathrm{result}\:\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{x}^{\mathrm{2}} \:\mathrm{2}^{−\mathrm{x}} \:=\mathrm{x}^{\mathrm{2}} \mathrm{e}^{−\mathrm{xlog2}} \\ $$$$\mathrm{changement}\:\mathrm{e}^{−\mathrm{xlog2}} =\mathrm{t}\left(\mathrm{t}\rightarrow\mathrm{0}\right)\:\Rightarrow−\mathrm{xlog2}=\mathrm{logt}\:\Rightarrow\mathrm{x}=−\frac{\mathrm{logt}}{\mathrm{log2}}\:\Rightarrow \\ $$$$\mathrm{x}^{\mathrm{2}} \:\mathrm{e}^{−\mathrm{xlog2}} =−\frac{\mathrm{log}^{\mathrm{2}} \mathrm{t}}{\mathrm{log}^{\mathrm{2}} \mathrm{2}}×\mathrm{t}\:=−\frac{\mathrm{tlog}^{\mathrm{2}} \mathrm{t}}{\mathrm{log}^{\mathrm{2}} \mathrm{2}}\:\:\mathrm{due}\:\mathrm{to}\:\mathrm{lim}_{\mathrm{t}\rightarrow\mathrm{0}} \mathrm{tlogt}=\mathrm{0}\:\Rightarrow \\ $$$$\mathrm{lim}_{\mathrm{x}\rightarrow+\infty} \mathrm{x}^{\mathrm{2}} \mathrm{e}^{−\mathrm{xlog2}} \:=\mathrm{0} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com