Question and Answers Forum

All Questions      Topic List

Gravitation Questions

Previous in All Question      Next in All Question      

Previous in Gravitation      Next in Gravitation      

Question Number 138896 by ajfour last updated on 19/Apr/21

Answered by ajfour last updated on 20/Apr/21

Let A be origin and x axis  vertically down towards center  of cube.  −dg_x =(((Gdm)x)/((x^2 +y^2 +z^2 )^(3/2) ))  −dg_x =(((ρG)xdxdydz)/((x^2 +y^2 +z^2 )^(3/2) ))  x∈[0,2a]  ;  y∈[−a,a] ;  z∈[−a,a]  −(g_x /(ρG))=∫dz∫dy{(1/( (√(y^2 +z^2 ))))−(1/( (√(4a^2 +y^2 +z^2 ))))}  =∫_(−a) ^(  a) {ln (((a+(√(a^2 +z^2 )))/(−a+(√(a^2 +z^2 )))))−ln( ((a+(√(5a^2 +z^2 )))/(−a+(√(5a^2 +z^2 )))))}dz  ρ=(M/(8a^3 ))   &   g_0 =−((GM)/R^2 )=−((ρG(8a^3 ))/((((6a^3 )/π))^(2/3) ))   as    (4/3)πR^3 =8a^3    ⇒     g_0 =−((ρG(8a))/(((6/π))^(2/3) ))  ⇒ −ρG=(g_0 /(8a))((6/π))^(2/3)   −ρG=((3g_0 )/(4πR))    as  a=R((π/6))^(1/3)   ⇒  ((g_x (4πR))/(3g_0 ))=∫_(−a) ^(  a) {ln (((a+(√(a^2 +z^2 )))/(−a+(√(a^2 +z^2 )))))−ln( ((a+(√(5a^2 +z^2 )))/(−a+(√(5a^2 +z^2 )))))}dz  let   (z/a)=t  ⇒  dz=adt  for z=a,  t=1  &  z=−a, t=−1  so  (g_x /g_0 )=((3a)/(4πR))∫_(−1) ^( 1) {ln (((1+(√(1+t^2 )))/(−1+(√(1+t^2 )))))−ln (((1+(√(5+t^2 )))/(−1+(√(5+t^2 )))))}dt  (g_x /g_0 )=(1/8)((6/π))^(2/3) ( I_0  )

$${Let}\:{A}\:{be}\:{origin}\:{and}\:{x}\:{axis} \\ $$$${vertically}\:{down}\:{towards}\:{center} \\ $$$${of}\:{cube}. \\ $$$$−{dg}_{{x}} =\frac{\left({Gdm}\right){x}}{\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \right)^{\mathrm{3}/\mathrm{2}} } \\ $$$$−{dg}_{{x}} =\frac{\left(\rho{G}\right){xdxdydz}}{\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \right)^{\mathrm{3}/\mathrm{2}} } \\ $$$${x}\in\left[\mathrm{0},\mathrm{2}{a}\right]\:\:;\:\:{y}\in\left[−{a},{a}\right]\:;\:\:{z}\in\left[−{a},{a}\right] \\ $$$$−\frac{{g}_{{x}} }{\rho{G}}=\int{dz}\int{dy}\left\{\frac{\mathrm{1}}{\:\sqrt{{y}^{\mathrm{2}} +{z}^{\mathrm{2}} }}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{4}{a}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} }}\right\} \\ $$$$=\int_{−{a}} ^{\:\:{a}} \left\{\mathrm{ln}\:\left(\frac{{a}+\sqrt{{a}^{\mathrm{2}} +{z}^{\mathrm{2}} }}{−{a}+\sqrt{{a}^{\mathrm{2}} +{z}^{\mathrm{2}} }}\right)−\mathrm{ln}\left(\:\frac{{a}+\sqrt{\mathrm{5}{a}^{\mathrm{2}} +{z}^{\mathrm{2}} }}{−{a}+\sqrt{\mathrm{5}{a}^{\mathrm{2}} +{z}^{\mathrm{2}} }}\right)\right\}{dz} \\ $$$$\rho=\frac{{M}}{\mathrm{8}{a}^{\mathrm{3}} }\:\:\:\&\:\:\:{g}_{\mathrm{0}} =−\frac{{GM}}{{R}^{\mathrm{2}} }=−\frac{\rho{G}\left(\mathrm{8}{a}^{\mathrm{3}} \right)}{\left(\frac{\mathrm{6}{a}^{\mathrm{3}} }{\pi}\right)^{\mathrm{2}/\mathrm{3}} }\: \\ $$$${as}\:\:\:\:\frac{\mathrm{4}}{\mathrm{3}}\pi{R}^{\mathrm{3}} =\mathrm{8}{a}^{\mathrm{3}} \:\:\:\Rightarrow \\ $$$$\:\:\:{g}_{\mathrm{0}} =−\frac{\rho{G}\left(\mathrm{8}{a}\right)}{\left(\frac{\mathrm{6}}{\pi}\right)^{\mathrm{2}/\mathrm{3}} }\:\:\Rightarrow\:−\rho{G}=\frac{{g}_{\mathrm{0}} }{\mathrm{8}{a}}\left(\frac{\mathrm{6}}{\pi}\right)^{\mathrm{2}/\mathrm{3}} \\ $$$$−\rho{G}=\frac{\mathrm{3}{g}_{\mathrm{0}} }{\mathrm{4}\pi{R}}\:\:\:\:{as}\:\:{a}={R}\left(\frac{\pi}{\mathrm{6}}\right)^{\mathrm{1}/\mathrm{3}} \\ $$$$\Rightarrow\:\:\frac{{g}_{{x}} \left(\mathrm{4}\pi{R}\right)}{\mathrm{3}{g}_{\mathrm{0}} }=\int_{−{a}} ^{\:\:{a}} \left\{\mathrm{ln}\:\left(\frac{{a}+\sqrt{{a}^{\mathrm{2}} +{z}^{\mathrm{2}} }}{−{a}+\sqrt{{a}^{\mathrm{2}} +{z}^{\mathrm{2}} }}\right)−\mathrm{ln}\left(\:\frac{{a}+\sqrt{\mathrm{5}{a}^{\mathrm{2}} +{z}^{\mathrm{2}} }}{−{a}+\sqrt{\mathrm{5}{a}^{\mathrm{2}} +{z}^{\mathrm{2}} }}\right)\right\}{dz} \\ $$$${let}\:\:\:\frac{{z}}{{a}}={t}\:\:\Rightarrow\:\:{dz}={adt} \\ $$$${for}\:{z}={a},\:\:{t}=\mathrm{1}\:\:\&\:\:{z}=−{a},\:{t}=−\mathrm{1} \\ $$$${so} \\ $$$$\frac{{g}_{{x}} }{{g}_{\mathrm{0}} }=\frac{\mathrm{3}{a}}{\mathrm{4}\pi{R}}\int_{−\mathrm{1}} ^{\:\mathrm{1}} \left\{\mathrm{ln}\:\left(\frac{\mathrm{1}+\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }}{−\mathrm{1}+\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }}\right)−\mathrm{ln}\:\left(\frac{\mathrm{1}+\sqrt{\mathrm{5}+{t}^{\mathrm{2}} }}{−\mathrm{1}+\sqrt{\mathrm{5}+{t}^{\mathrm{2}} }}\right)\right\}{dt} \\ $$$$\frac{{g}_{{x}} }{{g}_{\mathrm{0}} }=\frac{\mathrm{1}}{\mathrm{8}}\left(\frac{\mathrm{6}}{\pi}\right)^{\mathrm{2}/\mathrm{3}} \left(\:{I}_{\mathrm{0}} \:\right) \\ $$

Commented by mr W last updated on 20/Apr/21

I_0 =∫_(−1) ^( 1) {ln (((1+(√(1+t^2 )))/(−1+(√(1+t^2 )))))−ln (((1+(√(5+t^2 )))/(−1+(√(5+t^2 )))))}dt       ≈5.193793  g_x =ρGI_0 a  g_0 =((GM)/R^2 )=(G/R^2 )×((ρ4πR^3 )/3)=((4ρGπR)/3)  8a^3 =((4πR^3 )/3) ⇒(a/R)=((π/6))^(1/3)   (g_x /g_0 )=((3I_0 a)/(4πR))=(I_0 /8)×((6a)/(πR))=(I_0 /8)((6/π))^(2/3) ≈0.999376

$${I}_{\mathrm{0}} =\int_{−\mathrm{1}} ^{\:\mathrm{1}} \left\{\mathrm{ln}\:\left(\frac{\mathrm{1}+\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }}{−\mathrm{1}+\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }}\right)−\mathrm{ln}\:\left(\frac{\mathrm{1}+\sqrt{\mathrm{5}+{t}^{\mathrm{2}} }}{−\mathrm{1}+\sqrt{\mathrm{5}+{t}^{\mathrm{2}} }}\right)\right\}{dt} \\ $$$$\:\:\:\:\:\approx\mathrm{5}.\mathrm{193793} \\ $$$${g}_{{x}} =\rho{GI}_{\mathrm{0}} {a} \\ $$$${g}_{\mathrm{0}} =\frac{{GM}}{{R}^{\mathrm{2}} }=\frac{{G}}{{R}^{\mathrm{2}} }×\frac{\rho\mathrm{4}\pi{R}^{\mathrm{3}} }{\mathrm{3}}=\frac{\mathrm{4}\rho{G}\pi{R}}{\mathrm{3}} \\ $$$$\mathrm{8}{a}^{\mathrm{3}} =\frac{\mathrm{4}\pi{R}^{\mathrm{3}} }{\mathrm{3}}\:\Rightarrow\frac{{a}}{{R}}=\left(\frac{\pi}{\mathrm{6}}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} \\ $$$$\frac{{g}_{{x}} }{{g}_{\mathrm{0}} }=\frac{\mathrm{3}{I}_{\mathrm{0}} {a}}{\mathrm{4}\pi{R}}=\frac{{I}_{\mathrm{0}} }{\mathrm{8}}×\frac{\mathrm{6}{a}}{\pi{R}}=\frac{{I}_{\mathrm{0}} }{\mathrm{8}}\left(\frac{\mathrm{6}}{\pi}\right)^{\frac{\mathrm{2}}{\mathrm{3}}} \approx\mathrm{0}.\mathrm{999376} \\ $$

Commented by ajfour last updated on 20/Apr/21

If it is correct, it′s rather strange..  ⇒ I_0 =8((g_(cube) /g_(sphere) ))_A ((π/6))^(2/3)

$${If}\:{it}\:{is}\:{correct},\:{it}'{s}\:{rather}\:{strange}.. \\ $$$$\Rightarrow\:{I}_{\mathrm{0}} =\mathrm{8}\left(\frac{{g}_{{cube}} }{{g}_{{sphere}} }\right)_{{A}} \left(\frac{\pi}{\mathrm{6}}\right)^{\mathrm{2}/\mathrm{3}} \\ $$

Commented by mr W last updated on 20/Apr/21

i see this result as understandable.  the point A is closer to the center of  earth, so g_x  should be larger than g_0   at the surface of spherical earth. but  the mass of the cube is less   concentrated as the sphere, so g_x    should be smaller than g_0 . both effects  abrogate each other, so g_x  is almost  the same as g_0  at point A.

$${i}\:{see}\:{this}\:{result}\:{as}\:{understandable}. \\ $$$${the}\:{point}\:{A}\:{is}\:{closer}\:{to}\:{the}\:{center}\:{of} \\ $$$${earth},\:{so}\:{g}_{{x}} \:{should}\:{be}\:{larger}\:{than}\:{g}_{\mathrm{0}} \\ $$$${at}\:{the}\:{surface}\:{of}\:{spherical}\:{earth}.\:{but} \\ $$$${the}\:{mass}\:{of}\:{the}\:{cube}\:{is}\:{less}\: \\ $$$${concentrated}\:{as}\:{the}\:{sphere},\:{so}\:{g}_{{x}} \: \\ $$$${should}\:{be}\:{smaller}\:{than}\:{g}_{\mathrm{0}} .\:{both}\:{effects} \\ $$$${abrogate}\:{each}\:{other},\:{so}\:{g}_{{x}} \:{is}\:{almost} \\ $$$${the}\:{same}\:{as}\:{g}_{\mathrm{0}} \:{at}\:{point}\:{A}. \\ $$

Commented by mr W last updated on 20/Apr/21

Commented by mr W last updated on 20/Apr/21

Commented by mr W last updated on 20/Apr/21

https://possiblywrong.wordpress.com/2011/09/09/if-the-earth-were-a-cube/

Terms of Service

Privacy Policy

Contact: info@tinkutara.com