All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 138909 by bramlexs22 last updated on 19/Apr/21
∫x6−1(x3−1)3dx=?
Answered by mathmax by abdo last updated on 20/Apr/21
Φ=∫x6−1(x3−1)3dx⇒Φ=∫x6−1(x−1)3(x2+x+1)3dxtherootsofx2+x+1=arej=ei2π3andj−=e−i2π3⇒Φ=∫x6−1(x−1)3(x−j)3(x−j−)3dx=∫x6−1(x−1)3(x−jx−j−)3(x−j−)6dxwedothechangementx−jx−j−=t⇒x−j=tx−jt−⇒(1−t)x=j−jt−⇒x=j−jt−1−t⇒dxdt=−j−(1−t)−(j−jt−)(−1)(1−t)2=j−j−(1−t)2=2i.32(1−t)2=i32(1−t)2andx−j−=j−jt−1−t−j−=j−jt−−j−+jt−1−t=i32(1−t)alsox−1=j−jt−1−t−1=j−jt−−1+t1−t=j−1+(1−j−)t1−t⇒Φ=∫(j−jt−1−t)6−1(j−1+(1−j−)t1−t)3t3(i32(1−t))6i32(1−t)2dt=∫(j−jt−1−t)6−1)(1−t)9.26(i3)(j−1+(1−j−)t)3t3.2.(i3)6(1−t)2dt=25(i3)5∫{(j−jt−1−t)6−1}(1−t)7t3(j−1+(1−j−)t)3dt=(2i3)5∫(1−t)(j−jt−)6−(1−t)7t3(j−1+(1−jt−))3dt=(2i3)5∫(1−t)(j−jt−)6t3(j−1+(1−jt−))3dt−(2i3)5∫(1−t)7t3(j−1+(1−jt−)3dt....becontinued....
Answered by phanphuoc last updated on 20/Apr/21
∫x3+1(x3−1)2dx=∫dxx3−1+2∫dx(x3−1)2
Answered by MJS_new last updated on 20/Apr/21
∫(x3−1)(x3+1)(x3−1)3dx=∫x3+1(x3−1)2dx=[Ostrogradski′sMethod]=−2x3(x3−1)−13∫dxx3−1==−2x3(x3−1)+19∫x+2x2+x+1dx−19∫dxx−1==−2x3(x3−1)+39arctan2x+13+118ln(x2+x+1)−19ln∣x−1∣+C
Terms of Service
Privacy Policy
Contact: info@tinkutara.com