Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 138916 by mathsuji last updated on 20/Apr/21

∫_( 1) ^( 4)  (√(((√z)−1)/( (√z)))) dz =?

41z1zdz=?

Answered by bramlexs22 last updated on 20/Apr/21

(√(((√z)−1)/( (√z)))) = r ; (((√z) −1)/( (√z))) = r^2 → { ((z=1→r=0)),((z=4→r=(√(1/2)))) :}  ⇒r^2  (√z) = (√z) −1  ⇒(√z) = (1/(1−r^2 )) ; z = (1−r^2 )^(−2)   dz = −2(−2r)(1−r^2 )^(−3)  dr  dz = ((4r)/((1−r^2 )^3 )) dr  I= ∫_0 ^((√2)/2)  r(((4r)/((1−r^2 )^3 )))dr  I=∫ 2r(((2r)/((1−r^2 )^3 )))dr  by parts  { ((u=2r⇒du=2dr)),((v=−∫ ((d(1−r^2 ))/((1−r^2 )^3 ))=(1/(2(1−r^2 )^2 )))) :}  I= [ (r/((1−r^2 )^2 )) ]_0 ^((√2)/2) +∫_( 0) ^( ((√2)/2))  (dr/((1−r^2 )^2 ))  now you can solve it

z1z=r;z1z=r2{z=1r=0z=4r=12r2z=z1z=11r2;z=(1r2)2dz=2(2r)(1r2)3drdz=4r(1r2)3drI=220r(4r(1r2)3)drI=2r(2r(1r2)3)drbyparts{u=2rdu=2drv=d(1r2)(1r2)3=12(1r2)2I=[r(1r2)2]022+022dr(1r2)2nowyoucansolveit

Answered by Ankushkumarparcha last updated on 20/Apr/21

Solution: Ω(say) = ∫_1 ^( 4) (√(((√z)−1)/( (√z))))  dz     (Let  I = ∫ (√(((√z)−1)/( (√z)))) dz )  I = ∫ (√((((√z)−1)/( (√z))) )) dz =_(set (√z) = y)        ∫ 2(√(y^2 −y)) dy  (I/2) = ∫(√(y^2 −y)) dy => ∫ (√((y−(1/2))^2 − ((1/2))^2 )) dy   (∵ ∫ (√(x^2 −a^2 )) dx = ((x(√(x^2 −a^2 )))/2) − (a^2 /2)log_e ∣x+(√(x^2 −a^2 ))∣ +C )  (I/2) = (((2(√z)−1)(√((√z)((√z)−1))))/4) − (1/8)log_e ∣(√z) − (1/2) + (√((√z)((√z)−1)))∣ + C ( Now taking limits both sides from 1 to 4 )  Ω = ∫_1 ^( 4) (√((((√z)−1)/( (√z))) )) dz = ((3(√2))/2) + (1/4)log_e (3−2(√2))

Solution:Ω(say)=14z1zdz(LetI=z1zdz)I=z1zdz=setz=y2y2ydyI2=y2ydy=>(y12)2(12)2dy(x2a2dx=xx2a22a22logex+x2a2+C)I2=(2z1)z(z1)418logez12+z(z1)+C(Nowtakinglimitsbothsidesfrom1to4)Ω=14z1zdz=322+14loge(322)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com