All Questions Topic List
Arithmetic Questions
Previous in All Question Next in All Question
Previous in Arithmetic Next in Arithmetic
Question Number 138989 by metamorfose last updated on 20/Apr/21
findtheintegersx,y,z,nthatsatisfy:2n=x!+y!+z!
Answered by mindispower last updated on 21/Apr/21
letm=min(x,y,z),ifm⩾3⇒x!+y!+z!≡0[3]⇔2n≡0[3]impossibsince2,3arecoprime⇒m∈{0,1,2}bysymetrieofx!+y!+z!letm=x,x⩽y⩽zx=0,1⇒2n−1=z!+y!⩾2⇒n⩾2z!+y!≡1[2]⇒y={0,1}⇒2n−2=z!⇒2(2n−1−1)=z!,weseez⩾2since2∣2(2n−1−1)thepowerof2inthe2(2n−1−1)isonesince2n−1−1≡1[2]⇒z<4⇒z∈{2,3}z=2⇒2n−2=2⇒n=2z=3⇒2n=8⇒n=3case2x=2⇒2n−2=y!+z!⇒2(2n−1−1)=y!+z!,2⩽y<4becausepowerof2in2(2n−1−1)=1andy⩽zify⩾4⇒4∣(y!+z!)⇒powerof2iny!+z!isatless2impossiblify=2⇒22(2n−2−1)=z!⇒nosolutiony=3⇒2(2n−1−1)=6+z!⇒23(2n−3−1)=z!⇒z={4,5}z=4⇒24=2n−8⇒n=5z=5⇒128=2n⇒n=7,anderpermutationofx,y,z
Commented by metamorfose last updated on 21/Apr/21
thnxsir
Terms of Service
Privacy Policy
Contact: info@tinkutara.com