Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 139052 by EnterUsername last updated on 21/Apr/21

(1+z)^n =(1−z)^n   where z is a complex number

$$\left(\mathrm{1}+\mathrm{z}\right)^{\mathrm{n}} =\left(\mathrm{1}−\mathrm{z}\right)^{\mathrm{n}} \\ $$$${where}\:{z}\:{is}\:{a}\:{complex}\:{number} \\ $$

Answered by mathmax by abdo last updated on 21/Apr/21

z=−1 is not solution  let z≠−1  e⇒(((1−z)/(1+z)))^n =1 =e^(i(2kπ))  ⇒((1−z)/(1+z))=e^(i(((2kπ)/n)))        k∈[[0,n−1]]  ⇒1−z=e^((2ikπ)/n)  +e^((2ikπ)/n) z ⇒1−e^((2ikπ)/n)  =(1+e^((2ikπ)/n) )z ⇒  z_k =((1−e^((2ikπ)/n) )/(1+e^((2ikπ)/n) )) =((1−cos(((2kπ)/n))−isin(((2kπ)/n)))/(1+cos(((2kπ)/n))+isin(((2kπ)/n))))  =((2sin^2 (((kπ)/n))−2isin(((kπ)/n))cos(((kπ)/n)))/(2cos^2 (((kπ)/n))+2isin(((kπ)/n))cos(((kπ)/n)))) =((−isin(((kπ)/n))e^((ikπ)/n) )/(cos(((kπ)/n))e^((ikπ)/n) )) =−itan(((kπ)/n))  so the solution of this equation are z_k =−itan(((kπ)/n))  k∈[0,n−1]]

$$\mathrm{z}=−\mathrm{1}\:\mathrm{is}\:\mathrm{not}\:\mathrm{solution}\:\:\mathrm{let}\:\mathrm{z}\neq−\mathrm{1} \\ $$$$\mathrm{e}\Rightarrow\left(\frac{\mathrm{1}−\mathrm{z}}{\mathrm{1}+\mathrm{z}}\right)^{\mathrm{n}} =\mathrm{1}\:=\mathrm{e}^{\mathrm{i}\left(\mathrm{2k}\pi\right)} \:\Rightarrow\frac{\mathrm{1}−\mathrm{z}}{\mathrm{1}+\mathrm{z}}=\mathrm{e}^{\mathrm{i}\left(\frac{\mathrm{2k}\pi}{\mathrm{n}}\right)} \:\:\:\:\:\:\:\mathrm{k}\in\left[\left[\mathrm{0},\mathrm{n}−\mathrm{1}\right]\right] \\ $$$$\Rightarrow\mathrm{1}−\mathrm{z}=\mathrm{e}^{\frac{\mathrm{2ik}\pi}{\mathrm{n}}} \:+\mathrm{e}^{\frac{\mathrm{2ik}\pi}{\mathrm{n}}} \mathrm{z}\:\Rightarrow\mathrm{1}−\mathrm{e}^{\frac{\mathrm{2ik}\pi}{\mathrm{n}}} \:=\left(\mathrm{1}+\mathrm{e}^{\frac{\mathrm{2ik}\pi}{\mathrm{n}}} \right)\mathrm{z}\:\Rightarrow \\ $$$$\mathrm{z}_{\mathrm{k}} =\frac{\mathrm{1}−\mathrm{e}^{\frac{\mathrm{2ik}\pi}{\mathrm{n}}} }{\mathrm{1}+\mathrm{e}^{\frac{\mathrm{2ik}\pi}{\mathrm{n}}} }\:=\frac{\mathrm{1}−\mathrm{cos}\left(\frac{\mathrm{2k}\pi}{\mathrm{n}}\right)−\mathrm{isin}\left(\frac{\mathrm{2k}\pi}{\mathrm{n}}\right)}{\mathrm{1}+\mathrm{cos}\left(\frac{\mathrm{2k}\pi}{\mathrm{n}}\right)+\mathrm{isin}\left(\frac{\mathrm{2k}\pi}{\mathrm{n}}\right)} \\ $$$$=\frac{\mathrm{2sin}^{\mathrm{2}} \left(\frac{\mathrm{k}\pi}{\mathrm{n}}\right)−\mathrm{2isin}\left(\frac{\mathrm{k}\pi}{\mathrm{n}}\right)\mathrm{cos}\left(\frac{\mathrm{k}\pi}{\mathrm{n}}\right)}{\mathrm{2cos}^{\mathrm{2}} \left(\frac{\mathrm{k}\pi}{\mathrm{n}}\right)+\mathrm{2isin}\left(\frac{\mathrm{k}\pi}{\mathrm{n}}\right)\mathrm{cos}\left(\frac{\mathrm{k}\pi}{\mathrm{n}}\right)}\:=\frac{−\mathrm{isin}\left(\frac{\mathrm{k}\pi}{\mathrm{n}}\right)\mathrm{e}^{\frac{\mathrm{ik}\pi}{\mathrm{n}}} }{\mathrm{cos}\left(\frac{\mathrm{k}\pi}{\mathrm{n}}\right)\mathrm{e}^{\frac{\mathrm{ik}\pi}{\mathrm{n}}} }\:=−\mathrm{itan}\left(\frac{\mathrm{k}\pi}{\mathrm{n}}\right) \\ $$$$\mathrm{so}\:\mathrm{the}\:\mathrm{solution}\:\mathrm{of}\:\mathrm{this}\:\mathrm{equation}\:\mathrm{are}\:\mathrm{z}_{\mathrm{k}} =−\mathrm{itan}\left(\frac{\mathrm{k}\pi}{\mathrm{n}}\right) \\ $$$$\left.\mathrm{k}\in\left[\mathrm{0},\mathrm{n}−\mathrm{1}\right]\right] \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com