Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 13909 by tawa tawa last updated on 25/May/17

Solve simutaneously.  x(√x) + y(√y) = 183  x(√y) + y(√x) = 185

Solvesimutaneously.xx+yy=183xy+yx=185

Commented by RasheedSindhi last updated on 25/May/17

(x^(1/2) )^3 +(y^(1/2) )^3 =183  ⇒(x^(1/2) +y^(1/2) )(x−x^(1/2) y^(1/2) +y)=183....(i)  x^(1/2) y^(1/2) (x^(1/2) +y^(1/2) )=185....(ii)  (i)/(ii):  (((x−x^(1/2) y^(1/2) +y))/(x^(1/2) y^(1/2) ))=((183)/(185))  (x^(1/2) /y^(1/2) )−1+(y^(1/2) /x^(1/2) )=((183)/(185))  Let (x^(1/2) /y^(1/2) )=t  t+(1/t)=((183+185)/(185))=((368)/(185))  t^2 +1+((2t)/(185))=0  185t^2 +2t−185=0  t=((−2±(√(4−4(185)^2 )))/(2(185)))  t=((−2±2i(√(185^2 −1)))/(2(185)))  t=((−1±i(√(34224)))/(185))  (x^(1/2) /y^(1/2) )=((−1±4i(√(2139)))/(185))  (x/y)=(((−1±4i(√(2139)))/(185)))^2 =a^2   x=a^2 y  putting in (i)    a^2 y(√(a^2 y))+y(√y)=183  a^3 y(√y)+y(√y)=183  y^(3/2) =((183)/(a^3 +1))  y=(((183)/(a^3 +1)))^(2/3)   x=a^2 (((183)/(a^3 +1)))^(2/3)   Where a=((−1±4i(√(2139)))/(185))  Some mistkes are there in this  solution.

(x1/2)3+(y1/2)3=183(x1/2+y1/2)(xx1/2y1/2+y)=183....(i)x1/2y1/2(x1/2+y1/2)=185....(ii)(i)/(ii):(xx1/2y1/2+y)x1/2y1/2=183185x1/2y1/21+y1/2x1/2=183185Letx1/2y1/2=tt+1t=183+185185=368185t2+1+2t185=0185t2+2t185=0t=2±44(185)22(185)t=2±2i185212(185)t=1±i34224185x1/2y1/2=1±4i2139185xy=(1±4i2139185)2=a2x=a2yputtingin(i)a2ya2y+yy=183a3yy+yy=183y3/2=183a3+1y=(183a3+1)2/3x=a2(183a3+1)2/3Wherea=1±4i2139185Somemistkesarethereinthissolution.

Commented by ajfour last updated on 25/May/17

should have been easy if:  x(√x)+y(√y)=189  x(√y)+y(√x)=180

shouldhavebeeneasyif:xx+yy=189xy+yx=180

Commented by mrW1 last updated on 25/May/17

You are right. The given numbers  deliver no real solution and make  it difficult to check the result.

Youareright.Thegivennumbersdelivernorealsolutionandmakeitdifficulttochecktheresult.

Commented by ajfour last updated on 25/May/17

Sir, if you can see  Q.13903 ..i′d be   very thankful..

Sir,ifyoucanseeQ.13903..idbeverythankful..

Commented by tawa tawa last updated on 25/May/17

God bless you sir

Godblessyousir

Answered by mrW1 last updated on 25/May/17

u=(√x)  v=(√y)  u^3 +v^3 =183   (189)  u^2 v+v^2 u=185   (180)  (u+v)^3 =u^3 +v^3 +3(u^2 v+v^2 u)=183+3×185=738  (=189+3×180=729)  u+v=^3 (√(738))=9.037=a  (=^3 (√(729))=9)  uv(u+v)=uva  u^2 v+v^2 u=uva  185=uva   (180=9uv)  uv=((185)/a)=20.472=b   (=((180)/9)=20)   { ((u+v=a  (9))),((uv=b    (20))) :}  (u−v)^2 =u^2 +v^2 −2uv=u^2 +v^2 +2uv−4uv  =(u+v)^2 −4uv=a^2 −4b=−0.2206  (=9^2 −4×20=1)  u−v=±0.47i=±ci  (=±1)  ⇒(√x)=u=(((u+v)/2))+(((u−v)/2))=(a/2)±(c/2)i=4.52±0.235i  ((9/2)±(1/2)=5 or 4)  ⇒(√y)=v=(((u+v)/2))−(((u−v)/2))=(a/2)∓(c/2)i=4.52∓0.235i  ((9/2)∓(1/2)=4 or 5)  ⇒x=(4.5±0.235i)^2 =20.375±2.124i  (5^2 =25 or 4^2 =16)  ⇒y=(4.5∓0.235i)^2 =20.375∓2.124i  (4^2 =16 or 5^2 =25)

u=xv=yu3+v3=183(189)u2v+v2u=185(180)(u+v)3=u3+v3+3(u2v+v2u)=183+3×185=738(=189+3×180=729)u+v=3738=9.037=a(=3729=9)uv(u+v)=uvau2v+v2u=uva185=uva(180=9uv)uv=185a=20.472=b(=1809=20){u+v=a(9)uv=b(20)(uv)2=u2+v22uv=u2+v2+2uv4uv=(u+v)24uv=a24b=0.2206(=924×20=1)uv=±0.47i=±ci(=±1)x=u=(u+v2)+(uv2)=a2±c2i=4.52±0.235i(92±12=5or4)y=v=(u+v2)(uv2)=a2c2i=4.520.235i(9212=4or5)x=(4.5±0.235i)2=20.375±2.124i(52=25or42=16)y=(4.50.235i)2=20.3752.124i(42=16or52=25)

Commented by RasheedSindhi last updated on 25/May/17

V Nice Sir!

VNiceSir!

Commented by mrW1 last updated on 25/May/17

Thank you sir!

Thankyousir!

Commented by tawa tawa last updated on 25/May/17

God bless you sir.

Godblessyousir.

Answered by AH Soomro last updated on 25/May/17

A  different  try  x(√x) + y(√y) = 183..........(i)  x(√y) + y(√x) = 185..........(ii)    (i)^2 −(ii)^2 :      x^3 +2xy(√(xy))+y^3 =33489     x^2 y+2xy(√(xy))+xy^2 =34225     x^3 +y^3 −(x^2 y+xy^2 )=−736      (x+y)(x^2 −xy+y^2 )−xy(x+y)=−736  (x+y)(x−y)^2 =−736  Continue

Adifferenttryxx+yy=183..........(i)xy+yx=185..........(ii)(i)2(ii)2:x3+2xyxy+y3=33489x2y+2xyxy+xy2=34225x3+y3(x2y+xy2)=736(x+y)(x2xy+y2)xy(x+y)=736(x+y)(xy)2=736Continue

Commented by tawa tawa last updated on 25/May/17

God bless you sir.

Godblessyousir.

Answered by RasheedSindhi last updated on 25/May/17

Answer of the modified question.  Modification suggested by ajfour.  x(√x) + y(√y) = 189...........(i)  x(√y) + y(√x) = 180............(ii)  (i)⇒x^(3/2) +y^(3/2) =189   ⇒(x^(1/2) +y^(1/2) )(x−x^(1/2) y^(1/2) +y)=189....(iii)  (ii)⇒x^(1/2) y^(1/2) (x^(1/2) +y^(1/2) )=180...(iv)  (iii)/(iv):((x−x^(1/2) y^(1/2) +y)/(x^(1/2) y^(1/2) ))=((189)/(180))  (x^(1/2) /y^(1/2) )−1+(y^(1/2) /x^(1/2) )=((21)/(20))  (x^(1/2) /y^(1/2) )+(y^(1/2) /x^(1/2) )=((21)/(20))+1=((21+20)/(20))=((41)/(20))  t+(1/t)=((41)/(20))       [ t=(x^(1/2) /y^(1/2) )]  20t^2 −41t+20=0  t=(5/4),(4/5)  (x^(1/2) /y^(1/2) )=(5/4),(4/5)  (x/y)=((25)/(16))  ,  ((16)/(25))  x=((25)/(16))y  ,  ((16)/(25))y  putting these values in (i)  x(√x) + y(√y) = 189  ⇒(((25)/(16))y)(√(((25)/(16))y))+y(√y)=189  ⇒(((16)/(25))y)(√(((16)/(25))y))+y(√y)=189      y(√y)(((125)/(64))+1)=189      y(√y)(((64)/(125))+1)=189      y(√y)(((189)/(64)))=189      y(√y)(((189)/(125)))=189  y^(3/2) =64  y^(3/2) =125  y=64^(2/3) =16  y=125^(2/3) =25  x=((25)/(16))y=((25)/(16))(16)=25  x=((16)/(25))y=((16)/(25))(25)=16  (x,y)=(16,25) or  (25,16)

Answerofthemodifiedquestion.Modificationsuggestedbyajfour.xx+yy=189...........(i)xy+yx=180............(ii)(i)x3/2+y3/2=189(x1/2+y1/2)(xx1/2y1/2+y)=189....(iii)(ii)x1/2y1/2(x1/2+y1/2)=180...(iv)(iii)/(iv):xx1/2y1/2+yx1/2y1/2=189180x1/2y1/21+y1/2x1/2=2120x1/2y1/2+y1/2x1/2=2120+1=21+2020=4120t+1t=4120[t=x1/2y1/2]20t241t+20=0t=54,45x1/2y1/2=54,45xy=2516,1625x=2516y,1625yputtingthesevaluesin(i)xx+yy=189(2516y)2516y+yy=189(1625y)1625y+yy=189yy(12564+1)=189yy(64125+1)=189yy(18964)=189yy(189125)=189y3/2=64y3/2=125y=642/3=16y=1252/3=25x=2516y=2516(16)=25x=1625y=1625(25)=16(x,y)=(16,25)or(25,16)

Commented by tawa tawa last updated on 25/May/17

God bless you sir

Godblessyousir

Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 25/May/17

(√x)=t,(√y)=s  t^3 +s^3 =183  t^2 s+ts^2 =185⇒ts(t+s)=185  (t+s)^3 =t^3 +s^3 +3ts(t+s)=183+3×185=  ⇒t+s=((738))^(1/3) =9.03⇒ts=((185)/(9.03))=20.49  z^2 −9.03z+20.49=0⇒z=((9.03±(√(9.03^2 −4×20.49)))/2)  ⇒z=4.51±0.32i  (√x)=4.51±0.32i⇒x=20.24±2.88i  (√y)=4.51±0.32i⇒y=20.24±2.88i

x=t,y=st3+s3=183t2s+ts2=185ts(t+s)=185(t+s)3=t3+s3+3ts(t+s)=183+3×185=t+s=7383=9.03ts=1859.03=20.49z29.03z+20.49=0z=9.03±9.0324×20.492z=4.51±0.32ix=4.51±0.32ix=20.24±2.88iy=4.51±0.32iy=20.24±2.88i

Commented by tawa tawa last updated on 25/May/17

God bless you sir.

Godblessyousir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com