Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 139101 by mnjuly1970 last updated on 22/Apr/21

             .......nice   calculus.....  𝛗=^(???) ∫_0 ^( 1) ∫_0 ^( 1) ((1−x)/(1−xy))(−ln(xy))^(2019) dxdy                           .........

.......nicecalculus.....ϕ=???01011x1xy(ln(xy))2019dxdy.........

Answered by Dwaipayan Shikari last updated on 22/Apr/21

ϑ(α)=∫_0 ^1 ∫_0 ^1 ((1−x)/(1−xy))(xy)^α dxdy  =Σ_(n=0) ^∞ ∫_0 ^1 ∫_0 ^1 (xy)^(n+α) −x^(n+α+1) y^(n+α) dxdy  =Σ_(n=0) ^∞ ∫_0 ^1 (y^(n+α) /(n+α+1))−(y^(n+α) /((n+α+2)))dy  =Σ_(n=0) ^∞ (1/((n+α+1)^2 ))−(1/((n+α+1)(n+α+2)))  =Σ_(n=0) ^∞ (1/((n+α+1)^2 ))−ψ(α+1)+ψ(α+2)=ψ′(α+1)−ψ(α+1)+ψ(α+2)  ϑ^(2019) (α)=2020!(−1)^(2019) ψ^(2021) (α+1)−2019!ψ^(2020) (α+1)+2019!ψ^(2020) (α+2)  −ϑ^(2019) (0)=2020!ζ(2020)+2019!ζ(2020)−2019!(ζ(2021)−1)

ϑ(α)=01011x1xy(xy)αdxdy=n=00101(xy)n+αxn+α+1yn+αdxdy=n=001yn+αn+α+1yn+α(n+α+2)dy=n=01(n+α+1)21(n+α+1)(n+α+2)=n=01(n+α+1)2ψ(α+1)+ψ(α+2)=ψ(α+1)ψ(α+1)+ψ(α+2)ϑ2019(α)=2020!(1)2019ψ2021(α+1)2019!ψ2020(α+1)+2019!ψ2020(α+2)ϑ2019(0)=2020!ζ(2020)+2019!ζ(2020)2019!(ζ(2021)1)

Commented by mnjuly1970 last updated on 22/Apr/21

   thanks alot

thanksalot

Terms of Service

Privacy Policy

Contact: info@tinkutara.com